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1 Introduction 
This manual describes three packages of uniform and non-uniform random number 
generators: 

randomc.zip:  Uniform random number generators as C++ class libraries 

asmlib.zip: Same generators as binary libraries for C, C++ and other languages 

stocc.zip: Non-uniform random number generators as C++ class libraries 
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The random number generators in standard function libraries are not always of the best 
quality. With today's fast computers it is possible to make larger computer simulations than 
what has been common previously. Large Monte Carlo simulations require better random 
number generators. Furthermore, today's multi-core microprocessors require random 
number generators with support for multithreading. The present random number generator 
libraries are designed for the purpose of meeting these high demands. The advantages of 
these packages are: 
 

 Very good randomness 

 Very long cycle length 

 High resolution 

 Support for multiple threads and multiple streams 

 Very fast and efficient 

 Allow seeds of any length 

 Includes Mersenne Twister, Mother-Of-All generator, SFMT generator and 
combinations of these 

 Discrete uniform distribution over arbitrary interval is exact where other 
implementations have rounding errors 

 Continuous distributions supported: Uniform and normal 

 Discrete distributions supported: Uniform, Poisson, binomial, hypergeometric and 
various noncentral hypergeometric distributions 

 Open source 

 Support for Windows, Linux, BSD, Mac, etc. 
 
The following three packages of random number generator libraries are available here: 
 

 randomc.zip.  A C++ class library of uniform random number generators. 

   

 asmlib.zip. The same random number generators as optimized binary code 

libraries (*.lib, *.dll, *.a) to link into a software project. Includes support for all 

x86 and x86-64 platforms, including 32-bit and 64-bit Windows, Linux, BSD and 
Intel-based Mac. 
 

 stocc.zip. Non-uniform random number generators, including the following 

probability distributions: Normal, Poisson, Binomial, Hypergeometric, Fisher's 
Noncentral Hypergeometric, Wallenius' Noncentral Hypergeometric, etc. 

 
The latest versions of these packages are available from www.agner.org/random. 
 

2 Randomc package of random number generators 

2.1 Pseudo random number generators in the randomc library 

Mersenne twister 

The Mersenne Twister is a random number generator which has become very popular in 
recent years because of its long cycle length. 

SFMT generator 

The "SIMD-oriented Fast Mersenne Twister" (SFMT) is invented by Mutsuo Saito and 
Makoto Matsumoto. This is an improvement of the Mersenne Twister with better 
randomness and higher speed. It is designed specially for microprocessors with Single-
Instruction-Multiple-Data (SIMD) capabilities, which all modern PCs have. 

http://www.agner.org/random/
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Mother-of-all generator 

The Mother-of-all generator is an older multiply-with-carry generator invented by George 
Marsaglia. It uses less memory than the Mersenne Twister. 

Combined generator 

A combination of the SFMT and the Mother-of-all generators. The randomness is improved 
by combining two very different random number generators. 
 

2.2 C++ classes in the randomc library 

The randomc.zip package is a C++ class library containing the random number 

generators mentioned above. Single-threaded applications need only one instance of the 
desired class while multi-threaded applications need one instance for each thread. The 
following classes are included: 
 

CRandomMersenne: 

Header: randomc.h 

Source file: mersenne.cpp 

Constructor: CRandomMersenne(int seed); 

Description: Mersenne Twister pseudo random number generator. 
 

CRandomMother: 

Header: randomc.h 

Source file: mother.cpp 

Constructor: CRandomMother(int seed); 

Description: Mother-of-all pseudo random number generator. 
 

CRandomSFMT: 

Header: sfmt.h 

Source file: sfmt.cpp 

Constructor: CRandomSFMT(int seed, int IncludeMother = 0); 

Description: SFMT pseudo random number generator. Optionally combined with Mother-of-

all generator when IncludeMother = 1. 

 

CRandomSFMT1: 

Header: sfmt.h 

Source file: sfmt.cpp 

Constructor: CRandomSFMT1(int seed); 

Description: Combined SFMT and Mother-of-all pseudo random number generator. This is 

the same as CRandomSFMT with IncludeMother = 1. 

 
See page 21 for a theoretical discussion of these random number generators. 

Member functions (methods) 

void RandomInit(int seed); 

Initialize or re-initialize the random number generator. The value of seed can be any 

integer. The same seed always gives the same sequence of random numbers. A different 
seed gives a different sequence. 
 
void RandomInitByArray(int const seeds[], int NumSeeds); 

Available only in CRandomMersenne and CRandomSFMT. 

Initialize or re-initialize the random number generator. Allows any number of seeds. 

seeds[] is an array with NumSeeds seeds. A different value of any of the seeds gives a 

different sequence of random numbers. 
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int IRandom(int min, int max); 

Generates a random integer n with uniform distribution in the interval min ≤ n ≤ max.  
The distribution may be slightly biased due to rounding errors if the interval length (max - 

min + 1) is large and not a power of 2. Use IRandomX instead if the highest precision is 

required. 
Restrictions: max ≥ min and max - min + 1 < 232. 

If max - min + 1 = 232, i.e. if you are using the whole range of integers, then use BRandom() 

instead.  
Error conditions: Returns 0x80000000 if max < min. 
 
int IRandomX(int min, int max); 

Available only in CRandomMersenne and CRandomSFMT. 

Same as IRandom, but with exactly uniform distribution. See page 16 below for a detailed 

explanation. IRandomX takes more time if the length of the interval is different from the last 

call. 
 
uint32_t BRandom(); 

Gives a random 32-bit integer. May be used as 32 random bits. 
 
double Random(); 

Gives a random floating point number x with uniform distribution in the interval 0 ≤ x < 1. 
Resolution: 32 bits in Mersenne Twister and Mother-Of-All generator, 52 bits in SFMT and 

combined generator. (A long double version RandomL() with 63 bits resolution is 

available for the SFMT and combined generators in the asmlib.zip library). 

Overview of member functions 

Function 

Generator 

Mersenne Twister Mother-Of-All SFMT or 
combined 

Initialize with new 
seed 

CRandomMersenne:: 

RandomInit 
CRandomMother:: 

RandomInit 
CRandomSFMT:: 

RandomInit 

Initialize by array of 
multiple seeds 

CRandomMersenne:: 

RandomInitByArray 
 CRandomSFMT:: 

RandomInitByArray 

Integer random CRandomMersenne:: 

IRandom 
CRandomMother:: 

IRandom 
CRandomSFMT:: 

IRandom 

Integer random, 
exact 

CRandomMersenne:: 

IRandomX 
 CRandomSFMT:: 

IRandomX 

Random bits CRandomMersenne:: 

BRandom 
CRandomMother:: 

BRandom 
CRandomSFMT:: 

BRandom 

Floating point, 
32 bits resolution 

CRandomMersenne:: 

Random 
CRandomMother:: 

Random 
 

Floating point, 
52 bits resolution 

  CRandomSFMT:: 

Random 

Floating point, 
63 bits resolution 

  (only in asmlib 

library) 

 

Compiler requirements 

Class C++ compiler Compiler support for 
64-bit integers 

Compiler support for 
SSE2 and intrinsic 

functions 
CRandomMersenne x - - 
CRandomMother x x - 
CRandomSFMT x x x 
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You may use the libraries in the asmlib.zip package (see page 5) if your compiler does 

not meet these requirements. 

Hardware requirements 

CRandomMersenne and CRandomMother will work on any microprocessor for which a 

suitable compiler is available. 
 

The C++ version of CRandomSFMT works only on microprocessors with the SSE2 or later 

instruction set. All modern PCs have this. 

Randomness qualities 

Generator Cycle length Passes tests for 
randomness 

Bifurcation / 
diffusion 

Resolution of 
continuous uniform 

distribution 

Mersenne twister 219937-1 most low 32 bits 

Mother-of-all ≈ 2158 all high 32 bits 

SFMT ≥ 211213-1 most high 52 or 63 bits 

Combined > 211213-1 all high 52 or 63 bits 

 
See page 21 for a more detailed discussion of the randomness of these generators. 

Execution time 

The execution times vary a lot depending on the compiler and the optimization possibilities. 

The execution times are usually a little longer than for the asmlib library versions. The 

SFMT generator is the fastest, but all generators are pretty fast. 
 
 

3 Asmlib package of random number generators 
The asmlib.zip package is a binary code library containing carefully optimized functions 

for several different purposes, including random number generation. The Asmlib library is 
built in assembly language with optimization for different instruction set extensions. It 

replaces the previous package named randoma.zip. The asmlib.zip package is 

available from www.agner.org. 
 

3.1 Pseudo random number generators included in the asmlib library 

The asmlib.zip package contains the same pseudo random number generators as the 

randomc.zip package described above. It contains several different implementations of 

these generators for the sake of compatibility with C, C++ and other programming 

languages and different platforms. See the file asmlib-instructions.pdf for details. 

 

3.2 Physical random number generators included in the asmlib library 

The asmlib.zip library contains the function PhysicalSeed which can generate non-

deterministic random numbers on microprocessors that have a built-in physical random 
number generator. It will use the clock counter with sub-nanosecond resolution on 
processors that do not have this feature. This function is useful for generating a random 
seed for a pseudo random number generator when non-deterministic random numbers are 
desired. 
 
C++ prototype 
extern "C" int PhysicalSeed(int seeds[], int NumSeeds); 

 

http://www.agner.org/optimize/#asmlib
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The array seeds is filled with NumSeeds random integers. The return value indicates the 

method used. See asmlib-instructions.pdf for details. 

 
 

4 Stocc package of non-uniform generators 
The stocc.zip package is a C++ class library defining various non-uniform random 

number generators with various distributions. The non-uniform generators can be based on 

any of the uniform generators in the randomc and asmlib packages, which are used as a 

C++ base class. 

The following classes are included 

 

StochasticLib1: 

Header: stocc.h 

Source file: stoc1.cpp 

Constructor: StochasticLib1(int seed); 

Base class: Any of the classes in randomc.h or asmlibran.h. Set STOC_BASE to the 

desired base class. 
Defines generators for the following distributions: Bernoulli, Binomial, Hypergeometric, 
multivariate Hypergeometric, Multinomial, Normal, Poisson, and a shuffling function. 
 

StochasticLib2: 

Header: stocc.h 

Source file: stoc2.cpp 

Constructor: StochasticLib2(int seed); 

Base class: StochasticLib1. 

Defines alternative generators for the following distributions: Binomial, Hypergeometric, 
Poisson.  

The implementations in StochasticLib2 are faster than StochasticLib1 if the 

parameters are constant but slower if the parameters are changing. 
 

StochasticLib3: 

Header: stocc.h 

Source files: stoc3.cpp, fnchyppr.cpp, wnchyppr.cpp, erfres.cpp 

Constructor: StochasticLib3(int seed); 

Base class: StochasticLib1 (or StochasticLib2). 

Defines various noncentral hypergeometric distributions. These distributions are useful for 
simulating biased sampling and genetic models of evolution. 
 

Member functions (methods) in StochasticLib1: 

 
int StochasticLib1::Bernoulli(double p); 

Bernoulli distribution with probability parameter p. 
Returns 1 with probability p, or 0 with probability 1- p. 
Error conditions: 
Gives error message if p < 0 or p > 1. 

 
int32_t Binomial (int32_t n, double p); 

Binomial distribution with parameters n and p. 

This is the distribution of the number of red balls you get when drawing n balls with 

replacement from an urn where p is the fraction of red balls in the urn. Definition: 
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Error conditions: 

Gives error message if n < 0 or p < 0 or p > 1. 

 
int32_t StochasticLib1::Hypergeometric(int32_t n, int32_t m, 

int32_t N); 

Hypergeometric distribution with parameters n, m, N. (Note the order of the parameters). 
This is the distribution of the number of red balls you get when drawing n balls without 
replacement from an urn containing N balls, where m balls are red and N-m balls are white. 

Definition: 
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Error conditions: 
Gives error message if any parameter is negative or n > N or m > N. 

 
 
void StochasticLib1::MultiHypergeometric(int32_t * destination, 

int32_t * source, int32_t n, int colors); 

Multivariate hypergeometric distribution. This is the distribution you get when drawing n 

balls from an urn without replacement, where there can be any number of colors. This is the 

same as the hypergeometric distribution when colors = 2. The number of balls of each 

color is returned in destination, which must be an array with colors places. source 

contains the number of balls of each color in the urn. source must be an array with 

colors places. 

Error conditions: 

Gives an error message if any parameter is negative or if the sum of the values in source 

is less than n. The behavior is unpredictable if source or destination has less than colors 

places. 
 
void StochasticLib1::Multinomial(int32_t * destination, int32_t * 

source, int32_t n, int colors); 

void StochasticLib1::Multinomial(int32_t * destination, double * 

source, int32_t n, int colors); 

Multivariate binomial distribution. This is the distribution you get when drawing n balls 

from an urn with replacement, where there can be any number of colors. This is the same 

as the binomial distribution when colors = 2. The number of balls of each color is returned 

in destination, which must be an array with colors places. source contains the 

number or fraction of balls of each color in the urn. source must be a double or int array 

with colors places. 

The sum of the values in source does not have to be 1, but it must be positive. The 

probability that a ball has color i is source[i] divided by the sum of all values in source. 

Error conditions: 
Gives an error message if any parameter is negative or if the sum of the values in source is 

zero. The behavior is unpredictable if source or destination has less than colors 

places. 
 
double StochasticLib1::Normal(double m, double s); 

Normal distribution with mean m and standard deviation s. This distribution simulates the 

sum of many random factors. Definition: 
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Error conditions: None. 
 
 
double StochasticLib1::double NormalTrunc(double m, double s, 

double limit); 

Truncated normal distribution with mean m and standard deviation s. This is the normal 

distribution with the tails cut off at m  limit. Values outside the interval (m-limit) ≤ x ≤ 
(m+limit) are rejected. 
Error conditions: Gives error message if limit < s. 
 
 
int32_t StochasticLib1::Poisson(double L); 

Poisson distribution with mean L. 

This is the distribution of the number of events in a given time span or a given geographical 
area when these events are randomly scattered in time or space. Definition: 
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Error conditions: Gives error message if L < 0 or L > 2∙109. 

 
void StochasticLib1::Shuffle(int * list, int min, int n); 

Shuffling a list. This function makes a list of the n numbers from min to min+n-1 in 

random order. The result is returned in list, which must be an array with n elements. 

The array index goes from 0 to n-1. If you want to shuffle something else than integers then 

use the integers in list as an index into a table of the items you want to shuffle. 

Error conditions: none. The behavior is unpredictable if the size of the array list is less 

than n. 

 

Member functions (methods) in StochasticLib2: 

int32_t StochasticLib2::Hypergeometric(int32_t n, int32_t m, 

int32_t N); 

 
int32_t StochasticLib2::Binomial(int32_t n, double p); 

 
int32_t StochasticLib2::Poisson(double L); 

 

This is an alternative implementation of the similar functions in StochasticLib1. 

StochasticLib2 is faster than StochasticLib1 if the functions are called many times 

with the same parameters, but slower than StochasticLib1 if the parameters are 

changed. See the file sampmet.pdf for a description of the sampling methods. 

 

Member functions (methods) in StochasticLib3: 

 
void StochasticLib3::SetAccuracy(double accur); 

Set the desired accuracy of the subsequent function calls. The default value is 10-8. 
 
int32_t StochasticLib3::FishersNCHyp (int32_t n, int32_t m, int32_t 

N, double odds); 

The Fisher's noncentral hypergeometric distribution is the distribution of two binomial 

variates conditional upon their constant sum. See the file distrib.pdf for a definition. 

Execution may be slow and inexact when N is high and odds is far from 1. 



 9 

Error conditions: 

Gives error message if any parameter is negative or n > N or m > N. 

 
int32_t StochasticLib3::WalleniusNCHyp (int32_t n, int32_t m, 

int32_t N, double odds); 

The Wallenius noncentral hypergeometric distribution is similar to the hypergeometric 

distribution, but with bias. The bias can be seen as an odds ratio. odds > 1 will favor the red 

balls, and odds < 1 will favor the white balls. It is equal to the hypergeometric distribution 

when odds = 1. 

Error conditions: 

Gives error message if any parameter is negative or n > N or m > N. 

 
void StochasticLib3::MultiFishersNCHyp (int32_t * destination, 

int32_t * source, double * weights, int32_t n, int colors); 

The multivariate Fisher's noncentral hypergeometric distribution is the distribution of 

multiple binomial variates conditional upon their constant sum. See the file distrib.pdf 

for a definition. This function may be inexact, but uses an approximation with an accuracy 
that is better than 1% in most cases. The precision can be tuned at the expense of higher 
calculation times. 
Error conditions: 
Gives an error message if any parameter is negative or if the total number of balls with 

nonzero weight is less than n. The behavior is unpredictable if any of the arrays has less 

than colors places. 

 
void StochasticLib3::MultiWalleniusNCHyp (int32_t * destination, 

int32_t * source, double * weights, int32_t n, int colors);  

Multivariate Wallenius noncentral hypergeometric distribution. This is the distribution 
you get when drawing colored balls from un urn without replacement, with bias. See the file 

distrib.pdf for a definition. weights  is an array with colors places containing the 

weight or odds for each color. The probability of drawing a particular ball is proportional to 
its weight. This function may be inexact, but uses an approximation with an accuracy that is 
better than 1% in almost all cases. 
Error conditions: 
Gives an error message if any parameter is negative or if the total number of balls with 

nonzero weight is less than n. The behavior is unpredictable if any of the arrays has less 

than colors places. 

 
void StochasticLib3::MultiComplWalleniusNCHyp (int32_t * 

destination, int32_t * source, double * weights, int32_t n, int 

colors); 

Multivariate complementary Wallenius noncentral hypergeometric distribution. This is 

the distribution of the balls that remain in the urn when drawing N-n colored balls from un 

urn without replacement, with bias. (N is the sum of source). See the file distrib.pdf for 

a definition. 
 

Other functions 

void FatalError(const char *ErrorText); 

Header: randomc.h 

Source file: userintf.cpp 

Used internally to generate error messages. There is no portable way of writing error 
messages. Systems with a graphical user interface (e.g. Windows) need a pop-up message 
box, while console mode programs and other line oriented systems need output to the 

standard error output. Therefore, you may have to modify the function  FatalError  in the 

file userintf.cpp to fit your system. This function is called by the library functions in case 

of illegal parameter values or other fatal errors. Experience shows that these error 
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messages are very useful when debugging a program that uses the non-uniform random 

number generators. You may even enhance the FatalError  function to output additional 

debug information about the state of your program. 
 
void EndOfProgram(void); 

Header: randomc.h 

Source file: userintf.cpp 

Program exit used in the program examples. Windows-like environments may require that 
the program waits for the user to press a key before exiting, in order to prevent the output 
screen image from disappearing. Therefore, you may have to modify the function 

EndOfProgram  in userintf.cpp to fit your system if you experience this problem. 

 
 

5 Frequently asked questions 

5.1 Getting started 

The best way to get started is to try some of the example programs included in 

randomc.zip. 

 

Try to compile the file ex-ran.cpp with your C++ compiler and run it. The example 

program runs in console mode. It will output a list of random integer numbers, a list of 
random floating point numbers, and a list of random 32-bit numbers in hexadecimal 
representation. 
 
You may modify the example file to make it do what you want. Use the class member 

function IRandom(min,max) to get a random integer in the interval from min to max. 

 

Use the class member function Random() to get a floating point number in the interval from 

0 to 1. 
 

Use the class member function BRandom() to get random bits. 

 

The package stocc.zip includes the following examples for generating non-uniform 

distributions: 
 

ex-cards.cpp: Shuffle a deck of cards. 

 

ex-lotto.cpp: Picks six random numbers in the interval from 1 to 36 so that no number 

occurs more than once. 
 

ex-stoc.cpp: Generates random numbers with various different distributions: Uniform, 

normal distribution, Poisson, Binomial and Hypergeometric. 
 

5.2 Is the random number generator that comes with my compiler good 
enough? 

Historically, the random number generators in standard function libraries have had a very 
bad reputation. Many function libraries have been improved in recent years, but it is still 
recommended to check the quality of a random number generator before using it for 
demanding applications. 
 
Almost any random number generator is good enough for small entertainment applications. 
You need only be concerned if you are making large and demanding applications or if 
security is a concern. 
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You need to check the documentation for the random number generator in your standard 
function library. If there is little or no documentation then it is probably not very good. 
 
Few standard libraries have multi-threaded random number generators. You need to check 
this as well as various features of randomness to decide if a particular random number 
generator is good enough for your application. 
 

5.3 Which random number generator should I choose? 

All the random number generators in the present packages are very good. In most cases it 
does not matter which one you choose. 
 
If portability is important then choose the Mersenne Twister. This generator has become 
very popular in recent years due to its long cycle length and high dimensions of 
equidistribution. It is available in many different function libraries from different sources and 

in many different programming languages. The C++ code in randomc.zip can be 

compiled with almost any C++ compiler. Disadvantages: Fails a few of the most stringent 
tests for randomness. Poor bifurcation or diffusion, as explained in paragraph 6 page 21 
below. Uses more memory than simpler generators. 
 
If memory use is important then use the Mother-Of-All generator. It uses less memory than 
the other generators. It has passed stringent tests for randomness. Disadvantages: Shorter 
cycle length. Lower dimensions of equidistribution. Theoretically, it has a slight bias in the 
most significant bits, but this bias is too small to measure experimentally. 
 
If speed is important then use the SFMT generator for generating random integers. This is 
the fastest of the generators in the package and it performs better than the Mersenne 
Twister on some criteria of randomness. The floating point random numbers are provided 
with a higher resolution at the cost of lower speed, though. 
Disadvantages: Portability to other platforms is limited. Fails a few of the most stringent 
tests for randomness. 
 
If high resolution is important then use the SFMT generator alone or combined with the 
Mother-Of-All generator. The code provides floating point random numbers with a resolution 

of 52 bits where the other generators have only 32 bits. The library version in asmlib.zip 

also provides 63 bits resolution in a long double. Note that Microsoft compilers do not 

support long double precision. 

 
If it is important to get the best possible randomness then use the SFMT generator 
combined with the Mother-Of-All generator. This is recommended for the largest multi-
threaded Monte Carlo simulations and Monte Carlo integrations and for applications where 
security is a concern. 
 

You may combine any two random number generators. The file rancombi.cpp shows an 

example of how to combine the Mersenne Twister and the Mother-Of-All generator. 
 
See page 21 for a theoretical discussion of the difference between the different generators. 
 

5.4 How do I define which random number generator to use? 

For uniform random number generators, use the class name for the desired random number 
generator. The class names are listed below. 
 

For non-uniform random number generators: Define STOC_BASE to the name of the desired 

random number generator class. Include the header file stocc.h after the header file for 

the random number generator and after the definition of STOC_BASE. 
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See examples below. 
 
Random number generator classes using C++ source code: 

Generator C++ class Header file needed C++ file needed 

Mersenne twister CRandomMersenne randomc.h mersenne.cpp 

Mother-of-all CRandomMother randomc.h mother.cpp 

SFMT CRandomSFMT sfmt.h sfmt.cpp 

Combined SFMT 
and Mother-of-all 

CRandomSFMT1 sfmt.h sfmt.cpp 

 

Random number generator classes using binary library from asmlib.zip: 

Generator C++ class Header file needed Library needed 

Mersenne twister CRandomMersenneA asmlibran.h asmlib.zip 

Mother-of-all CRandomMotherA asmlibran.h asmlib.zip 

SFMT CRandomSFMTA asmlibran.h asmlib.zip 

Combined SFMT 
and Mother-of-all 

CRandomSFMTA1 asmlibran.h asmlib.zip 

 
 
Example generating 10 random integers from 0 to 99 using Mother-of-all generator: 
 
#include <stdio.h> 

#include "randomc.h" 

#include "mother.cpp" 

 

int main () { 

    int i; 

    int seed = 8; 

     

    // make random number generator instance 

    CRandomMother ran(seed); 

    for (i=0; i<10; i++) { 

        printf("\n%2i", ran.IRandom(0,99)); 

    } 

 

    printf("\n"); 

    return 0; 

} 

 
Same example using asmlib library: 
 
#include <stdio.h> 

#include "asmlibran.h" 

 

int main () { 

    int i; 

    int seed = 8; 

     

    // make random number generator instance 

    CRandomMotherA ran(seed); 

    for (i=0; i<10; i++) { 

        printf("\n%2i", ran.IRandom(0,99)); 

    } 

 

    printf("\n"); 

    return 0; 

} 
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For non-uniform random number generators, you need to define STOC_BASE to the name of 

the random number generator class. This example writes the numbers from 1 to 10 in 
random order, using the SFMT generator: 
 
#include <stdio.h> 

#include "randomc.h" 

#include "sfmt.h" 

 

#define STOC_BASE CRandomSFMT 

 

// stocc.h must come after headers defining random number 

// generators and after the definition of STOC_BASE 

#include "stocc.h" 

 

#include "sfmt.cpp" 

#include "stoc1.cpp" 

#include "userintf.cpp" 

 

int main () { 

    int i; 

    int seed = 1; 

    const int listlen = 10; 

    int list[listlen]; 

     

    // make non-uniform random number generator instance 

    StochasticLib1 ran(seed); 

 

    // make shuffled list 

    ran.Shuffle(list, 1, listlen); 

 

    // print out 

    for (i = 0; i < listlen; i++) { 

        printf("  %2i", list[i]); 

    } 

 

    printf("\n"); 

    return 0; 

} 

 
Same example using asmlib library: 
 
#include <stdio.h> 

#include "asmlibran.h" 

 

#define STOC_BASE CRandomSFMTA 

 

// stocc.h must come after headers defining random number 

// generators and after the definition of STOC_BASE 

#include "stocc.h" 

 

#include "stoc1.cpp" 

#include "userintf.cpp" 

 

int main () { 

    int i; 

    int seed = 1; 

    const int listlen = 10; 
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    int list[listlen]; 

     

    // make non-uniform random number generator instance 

    StochasticLib1 ran(seed); 

 

    // make shuffled list 

    ran.Shuffle(list, 1, listlen); 

 

    // print out 

    for (i = 0; i < listlen; i++) { 

        printf("  %2i", list[i]); 

    } 

 

    printf("\n"); 

    return 0; 

} 

 
The reason why we are not using templates with the generator base class as parameter is 
that the syntax of accessing base class members when deriving from a template class is not 
very intuitive (see www.parashift.com/c++-faq-lite/nondependent-name-lookup-
members.html). 
 

5.5 Choosing a seed 

The seed is a start value that is needed for the pseudo random number generators. If you 
run a program again with the same seed then you will get exactly the same sequence of 
random numbers. If you use a different seed then you will get a different sequence of 
random numbers. The seed does not have to be random for the sequence to appear 
random. But the seed has to come from an unpredictable source if you want the sequence 
of random numbers to be unpredictable. 
 
If you want the sequence to be different every time then you may use the time or some 

other changing value as seed. The example ex-ran.cpp uses the time in seconds as 

seed. The function ReadTSC which is provided in the asmlib.zip library gives the time as 

a clock count with sub-nanosecond resolution. This can be considered a random seed if the 
time depends on a command from a human user. But this method can generate only one 
random seed for each human-induced event. 
 
Some microprocessors have a built-in physical random number generator, and we can 

expect this feature to be ubiquitous in the future. The function PhysicalSeed in 

asmlib.zip can make non-deterministic and truly unpredictable seeds on computers that 

have this feature. 
 
In the cases of Monte Carlo simulation and Monte Carlo integration applications it is 
desirable to have reproducible results as explained below in section 5.15 page 20. Let the 
user input the seed or use, for example, 1 in the first simulation, 2 in the second simulation. 
etc. The seed does not have to be random. 
 
It may be useful to have multiple sources of randomness for the seed, for example in 

security applications. The RandomInitByArray function allows multiple seeds. Not all 

seeds have to be random as long as at least one of the seeds has sufficient unpredictability. 
Useful sources of seeds are various time functions, thread ID, user ID, various hardware 
parameters such as IP number, MAC address, hard disk ID, etc. and all sorts of sound and 
video. 
 
Multi-threaded applications must have a different seed for each thread as explained below 
in section 5.7 page 15. 

http://www.parashift.com/c++-faq-lite/nondependent-name-lookup-members.html
http://www.parashift.com/c++-faq-lite/nondependent-name-lookup-members.html
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5.6 C++ version or binary library? 

The C++ class library in randoc.zip and the binary library in asmlib.zip provide the 

same random number generators. It is mainly a matter of convenience which one you 
choose. The main differences are: 
 

 The binary library is faster than the C++ library in most cases, but not all. However, 
both libraries are so fast that they contribute little to the total execution time in most 
applications. 
   

 The binary library works only on x86 platforms (including Windows, Linux, BSD and 
Intel-based Mac computers). The C++ implementations of the Mersenne Twister and 
the Mother-Of-All generator work on any platform for which a suitable C++ compiler 
is available. 
   

 The C++ implementation is only for applications coded in the C++ language. The 
binary library also works with C and several other programming languages. 
   

 The binary library allows a simple C-style function call interface without class objects 
for single-thread applications. 
   

 The binary library implementation of the SFMT generator can provide long double 
random numbers with a very high resolution of 63 bits. 
   

 The non-uniform generators in stocc.zip can use either the C++ or the binary 

library as base. 
 

5.7 Multi-threading 

Very time-consuming applications can often take advantage of computers with multiple 
microprocessor cores by dividing the work between the microprocessor cores. This requires 
that it is logically possible to divide the job into independent sub-jobs that can run in parallel 
threads. There should preferably be no communication between the threads. The number of 
threads should preferably not be higher than the number of microprocessor cores. 
 

Use any of the random number generator C++ classes in randomc.zip or asmlib.zip 

and make one object of the class in each thread. 
 
The threads must use different seeds to make sure that each thread has a unique sequence 

of random numbers. It is convenient to use the RandomInitByArray function with two 

seeds where one of the seeds is the same for all the threads and the second seed is the 
thread number. 
 
If the code is written in C rather than C++ then use the binary library and make a local buffer 
in each thread for the internal variables of the random number generator. 
 

The non-uniform random number generators in stocc.zip do not work with the C-style 

functions because they need a C++ base class. 
 

5.8 Calling from other programming languages 

The asmlib library is designed for calling from C and C++. It is possible to call the library 

from other languages if the compiler supports binary library calls. 
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Some compiled languages such as Fortran may allow static linking of libraries. Other 
languages such as Delphi Pascal, C#, Visual Basic and managed C++.NET work better with 
dynamic link libraries (DLL). Use the DLL version under Windows if the compiler does not 
support static linking or if the static link library is incompatible. 
 

A DLL uses the stdcall calling convention by default. The stdcall versions of the 

functions in asmlib.zip have a D suffix on the name. 

 
Linking with Java is particularly difficult. It is necessary to use the Java Native Interface 
(JNI). 
 
It is preferred to use the single-thread functions when calling from other languages than C 
or C++. If you consider using multiple threads for the sake of speed then you should be 
aware that the program will probably run faster if coded in C++. 
 
If you nevertheless decide to make a multi-threaded program in a language other than C or 
C++ then you have to use the multi-threaded C functions with a local array as buffer. Note 
that arrays are represented differently in different programming languages. You need to 
transfer the raw C-style array to the function rather than an array descriptor. See the manual 
for the specific compiler for how to link with C-style arrays. 
 

5.9 Position-independent code 

Shared objects (*.so) in 32-bit Linux, BSD and Mac require position-independent code. 

Special position-independent versions of asmlib are available for building shared objects. 

See the manual asmlib-instructions.pdf. Position-independent code is not an issue 

in 64-bit systems and in Windows. 
 

5.10 IRandom or IRandomX? 

The functions IRandom and IRandomX both give a random integer with uniform distribution 

in the inclusive interval from min to max. IRandom is a little faster and a little less accurate 

than IRandomX. 

 

The slight error in IRandom can be explained as follows. We have a random number 

generator that makes a random integer X in the interval [0,B-1] so that there are B possible 
values for X. In our case we have a 32-bit output, so that B = 232. We want to convert this to 
an integer Y in the interval [min,max] so that we have L = max-min+1 different possible 
values of Y. The simplest way of conversion is 











B
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Y min  

If B is divisible by L then there will be B/L different values of X for each value of Y. If B is not 
divisible by L then there will be (B mod L) values in excess so that some of the Y values will 

have 








L

B
 corresponding X values and some Y values have 1









L

B
 corresponding X values. 

In other words, some Y values have higher probability than others. 

 
The Y values that have higher probability are evenly spread over the interval from min to 
max so that the mean will still be close to (min+max)/2.  
 
Most random number generator packages have this inaccuracy. It does not help to generate 
an integer random number from a floating point random number. The floating point number 
still has B possible values so that the problem is the same. The error can be reduced by 
using a high resolution (high value of B) but there is still a theoretical error. 
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If B is much bigger than L then the difference in probability between the Y values will be 
small. If L is a power of 2 then B is divisible by L and there will be no error. 

 

The IRandomX function eliminates the inaccuracy by rejecting the excess (B mod L) values 

of X. If X happens to have one of the excess values then it is rejected and a new value of X 
is generated. This method makes it certain that all values of Y have exactly the same 

probability. 
 

The difference between IRandom and IRandomX is illustrated in the example program 

testirandomx.cpp. This test program compares the results for IRandom and IRandomX 

in the worst case where the value of L is 3/4 of B. The result in this case shows that every 
third Y value has a frequency that is double the frequency of the other Y values when 

IRandom is used. All Y values have the same frequency when IRandomX is used. 

 

The IRandomX function needs extra time to calculate (B mod L) every time L is changed. 

 

In conclusion, it is recommended to use IRandomX when L is very large and not a power of 

2 and you need high precision. 
 
If L is less than around 1000 then the error is so small that it does not show even in large 

statistical tests. In this case it is acceptable to use IRandom. 

 

5.11 Why is the floating point interval half-open? 

The Random function generates random floating point numbers Y in the interval 0 ≤ Y < 1. 

This has to do with quantification. There is a finite number of possible Y values and we want 

these values to be evenly spaced. The spacing is always a negative power of 2, for example 
2-32, because of the binary representation. If the spacing between possible Y values is 2-b 
then there are 2b possible values in the interval 0 ≤ Y < 1, but 2b+1 possible values in the 
interval 0 ≤ Y ≤ 1. The floating point value Y is generated from a b-bit integer X in the interval 
0 ≤ X < 2b by calculating Y = X / 2b. It would be difficult to generate 2b+1 different Y values 
from 2b different X values. 

 
However, the choice of a half-open interval for X is not only a matter of making the 

generation simple. It is also desirable for certain reasons. Assume that we want to generate 
an event with a specific probability p, for example p = 0.5. In the C++ code we can write, for 

example: 
 

CRandomMersenne RanGen(time(0)); 

double Y = RanGen.Random(); 

double p = 0.5; 

if (Y < p) { 

   // This will happen with probability p 

} 

 
The above code generates an event with probability p because the fraction of possible Y 
values less than p is equal to p. If Y had 2b+1 possible values in the interval 0 ≤ Y ≤ 1 then 
the probability of Y < p would be approximately p - 2-b-1, and the probability of Y ≤ p would be 
approximately p + 2-b-1. In other words, it is impossible to generate an event with exactly the 
probability p if we use the closed interval 0 ≤ Y ≤ 1, but easy if we use the half-open interval 
0 ≤ Y < 1. Generating events with specific probabilities is perhaps the most important 

application of random number generators. Therefore it is desirable to have the half-open 
interval 0 ≤ Y < 1. 

 
On the other hand, the mean of Y is not exactly 0.5 as we would like the mean of a uniform 
distribution to be, but 0.5 - 2-b-1. If we have a symmetric interval, i.e. 0 ≤ Y ≤ 1 or 0 < Y < 1 

then the mean will be exactly 0.5. 
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So, as long as the random number is quantified we cannot have exactness in both the 
generation of events with specific probabilities and exactness in the mean at the same time. 
 
Fortunately, the error is very small. With a resolution of b = 32 bits the error in the mean will 

be so small that we cannot detect it in a statistical test with a realistic sample size. In other 
words, the error is theoretical only and has no practical significance. And we can reduce the 
error further by choosing a higher resolution. The present packages offer random numbers 
with resolutions as high as 52 or 63 bits. 
 
The difference between the probabilities of Y < p and Y ≤ p may look confusing to a 

mathematician because math textbooks usually assume infinite precision so that the two 
probabilities are the same. Theoretical math books rarely make this kind of distinctions and 
it may be quite arbitrary whether a book specifies open or closed intervals for uniform 
random numbers. Half-open intervals for random numbers are more likely to be seen in 
computer books than in math books. You should not be concerned about a math book 
specifying e.g. a closed interval when in fact you have a half-open interval. 
 
It is possible to manipulate the generators to get different output intervals, but this should be 
done only if there is a very specific reason to do so. Examples: 
 

CRandomSFMTA1 RanGen(time(0)); 

double r1, r2, r3, r4, r5; 

 

// Random number in interval 0 <= r1 < 1 

r1 = RanGen.Random(); 

 

// Random number in interval 0 < r2 <= 1 

r2 = 1.0 - RanGen.Random(); 

 

// Random number in interval 0 < r3 < 1 

do { 

   r3 = RanGen.Random(); 

} while (r3 == 0);   // Reject r3 if 0 

 

// Random number in interval 0 <= r4 <= 1 

// (round from long double to double) 

r4 = (double)RanGen.RandomL(); 

 

// Random number in interval a <= r5 < b 

const double a = 5., b = 8.; 

r5 = a + (b-a)*RanGen.Random(); 

 

In the r4 example we are rounding from long double to double so that values very 

close to 1 will be rounded to 1. This is not necessary for the sake of precision, but it may be 
useful if you want to make sure that the exact values 0 and 1 can actually both occur 

(though very rarely). Note that the long double function RandomL is available only in the 

binary library SFMT generator and that Microsoft compilers do not support long double 

precision.  
 

5.12 Generating events with a specific probability 

There are various ways to generate an event with a specific probability. If you want to 

generate an event with probability p, where p is a floating point number, then use for 

example: 
 

CRandomMersenne RanGen(time(0)); 

double p = 0.25; 

if (RanGen.Random() < p) { 

   // This will happen with probability p 
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} 

 
There is another way if the probability is a rational number. For example, to generate an 

event with probability P/Q where P and Q are positive integers: 

 
CRandomMersenne RanGen(time(0)); 

const int P = 7, Q = 20; 

if (RanGen.IRandom(1,Q) <= P) { 

   // This will happen with probability P/Q 

} 

 

This method is exact if we use IRandomX. 

 

If Q is a power of 2 then it is faster to use random bits: 

 
CRandomMersenne RanGen(time(0)); 

const int P = 5, Q = 16; 

if ((RanGen.BRandom() & (Q-1)) < P) { 

   // This will happen with probability P/Q if Q is a power of 2 

} 

 
Special cases: 
 

CRandomMersenne RanGen(time(0)); 

if (RanGen.BRandom() & 1) { 

   // This will happen with probability 1/2 

} 

if ((RanGen.BRandom() & 3) == 0) { 

   // This will happen with probability 1/4 

} 

if (RanGen.BRandom() & 3) { 

   // This will happen with probability 3/4 

} 

 

5.13 When is a high resolution needed? 

The floating point random numbers are available with resolutions of 32, 52 or 63 bits. See 
the table on page 5 for details. A resolution of 32 bits means that the interval from 0 to 1 is 
divided into 232 different points, and the minimum distance between two different random 
numbers is 2-32 ≈ 2∙10-10. Events with a probability lower than this cannot be simulated when 
a resolution of 32 bits is used. Large simulation studies need a higher resolution if you want 
to make sure that events with extremely low probabilities can be simulated correctly. Higher 
resolutions take longer time to generate. 
 

5.14 Generating non-uniform random numbers 

Monte Carlo simulations may require random variates with a specific probability distribution, 

such as normal or Poisson distribution. The variate generators are in stocc.zip. These 

variate generators convert a random number with uniform distribution to the desired 
distribution, e.g. a Poisson distribution. The basic generator can be any of the random 

number generators in randomc.zip or asmlib.zip. See page 11 for how to specify 

which generator to use. 
 

The program example ex-stoc.cpp makes random numbers with uniform, normal, 

Poisson, binomial and hypergeometric distributions. 
 

See the file distrib.pdf for definition of the distributions and the file sampmet.pdf for a 

description of the sampling methods used. 
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5.15 Monte Carlo simulation applications 

The name Monte Carlo is traditionally used for computer simulation of processes that 
include random events. Depending on the application, you may need uniform or non-
uniform random numbers. 
 
The value of the seed for the random number generator should be input by the user. If the 
simulation shows a particularly interesting behavior then the user can replay the simulation 
with the same seed to study this behavior in more detail, or repeat with a different seed to 
see if the unusual behavior disappears. The seeds can be simple numbers such as 1, 2, 3. 
They do not have to be particularly random. 
 
Very time-consuming simulations may be split up into multiple threads on a computer with 
multiple microprocessor cores. See chapter 5.7 on page 15 above. 
 
Monte Carlo integration can be implemented in the same way. 
 

5.16 Simulating evolution 

The non-central hypergeometric distributions are useful for simulating Darwinian models of 

evolution. This is illustrated in the example programs ex-evol1.cpp and ex-evol2.cpp. 

 

ex-evol1.cpp simulates evolution based on competition and selective survival of 

individuals with different phenotypes. 
 

ex-evol2.cpp simulates evolution based on differential breeding where the breeding 

success depends on the phenotypes of both parents. 
 
See also www.agner.org/evolution for a complete simulation program with graphical 
representation of the results. 
 
These distributions are also available in the R-language package BiasedUrn. 
 
It is recommended to use pseudo random number generators with a high resolution and 
long cycle length in order to correctly simulate events with extremely low probability such as 
rare combinations of mutations. 
 

5.17 Games and entertainment applications 

The quality of the random number generator is not very critical for entertaining games etc. 
Any random number generator will do. 
 

5.18 Gambling applications 

Personally, I consider gambling an unethical exploitation of certain human psychological 
and mental weaknesses. Consequently I do not endorse the use of this software for 
commercial gambling applications. 
 

5.19 Security applications 

On most pseudo random number generators it is possible to reconstruct all past and future 
numbers in the random number sequence from a subsequence of a certain length. This also 
applies to the generators used in the present packages. On the "linear feedback shift 
register" types (Mersenne Twister and SFMT generator) this is possible even without 
knowing the structure of the generator. 
 

http://www.agner.org/evolution
http://cran.r-project.org/web/packages/BiasedUrn/index.html
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The reconstruction of a random sequence becomes much more difficult when two or more 
different random number generators of fundamentally different design are combined. Both 
generators should have a cycle length too long for trying all possible combinations. You may 
use the combination of the SFMT and the Mother-Of-All generator or the Mersenne Twister 
and the Mother-Of-All generator. 
 
A single 32-bit seed can be a security problem because an attacker with a powerful 
computer can try all possible seeds in a reasonable amount of time. Use 

RandomInitByArray with multiple seeds of different origin for higher security. See 

chapter 5.5 on page 14 above. 
 

The PhysicalSeed function in asmlib.zip can provide truly unpredictable seeds on 

computers that have a built-in physical random number generator. 
 
These precautions should be taken if the random number generators are used for 
generating random passwords, encryption and other security applications. 
 

5.20 Error conditions 

There is no standardized and portable way of generating error messages in a C or C++ 
function library. I have not used structured exception handling because this could slow down 
the execution of error-free programs and because of compatibility problems across diverse 
platforms, compilers and programming languages. 
 

The randomc.zip package has no specific error reporting. It is assumed that constructors 

are always called so that class data are initialized properly. The IRandom and IRandomX 

functions return 0x80000000 if max < min or max - min + 1 ≥ 232. 
 

The asmlib.zip package reports errors simply by provoking a divide-by-zero error. This 

may happen if a random number generator is not initialized before it is used or if the 

specified buffer size is insufficient. The IRandom and IRandomX functions return 

0x80000000 if max and min are out of range as specified above. 
 

The stocc.zip package reports errors by calling the FatalError function in 

unserintf.cpp. This happens if any parameter is out of range. You may modify the 

FatalError function to fit the user interface of your program. 

 
 

6 Theoretical details 

6.1 How pseudo random number generators are constructed 

The main criteria for a good pseudo random number generator are: good randomness as 
evaluated by theoretical as well as experimental tests, long cycle length, and fast generation 
of random numbers. 
 
A random number generator is typically based on a recursion of the form: 
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where the transition function f calculates each new value Xn from the k preceding values. 
The transition function f can use either integer (Euclidian) algebra modulo some value m, or 

finite field algebra. 
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The generators based on integer algebra use addition and/or multiplication. For example, a 
simple linear congruential generator has the form: 
 

mbaXX nn mod)( 1    

 
The modulo operation is easy to implement if m = 2b, where b is the number of bits in a 

computer word. To take a value modulo 2b is simply to ignore the carry and use only the 
lower b bits of the result. 

 
In some cases, a better randomness can be obtained by making m a prime. However, this 
implies a rounding error which most theorists have ignored. Assume, for example, that we 
have chosen m = 231-1, which is a prime. We want to convert Xn to a floating-point uniform 
random number Un = Xn/m in the interval [0,1). The representation of floating-point numbers 
(IEEE 754 standard) is quantified so that the maximum number of equidistant points in the 
interval [0,1) is a power of 2 (224, 253 or 264, depending on the precision). To get equidistant 
values of Un, we will need to space the values by 2-31. There are only 231-1 possible values 
of Xn, so one of the values in the interval [0,1) will be missing and the distribution will not be 

perfectly uniform. For this reason, I have chosen not to use any random number generator 
where m is not a power of 2. 

 
If the transition function f contains only simple algebraic operations such as addition and 
multiplication then there is information flow from the least significant bits of the X values to 

the most significant bits through the carries, but no information flow in the opposite direction. 
The consequence of this is that the least significant bits of each X form an independent 

random number generator with inferior randomness. The most significant bits are more 
random than the least significant bits. This is unacceptable since some applications may 
rely on the least significant bits. For example, it is quite common to have an application that 
tests whether Xn is odd or even, which is determined only by the least significant bit. To 
avoid this problem, it is necessary to establish a feedback from the most significant bits to 
the least significant bits. This is done in the multiply-with-carry generator, which adds the 
upper bits of a multiplication result to the lower bits. A multiply-with-carry generator with 
more than one factor is the Mother-Of-All generator invented by George Marsaglia: 
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This generator has very good randomness and passes all tests in the powerful TestU01 

battery of tests for randomness4. A minor drawback of this generator2 is that it has a slight 
bias in the upper bits of Xn. This bias is too small to show in any experimental tests. 

 
The present package uses a Mother-Of-All generator with k = 4 and b = 32. The transition 

function involves four multiplications of 32-bit factors into 64-bit products and addition of 
these 64-bit products. It is required that the compiler supports such 64-bit operations, or it 
must be coded in assembly language. 
 
Some measures of randomness are better determined by theoretical analysis than by 
experiment. Most importantly, the cycle length should preferably be so long that it cannot be 
determined experimentally. The cycle length is the number of random numbers that can be 
generated before the sequence is repeated. The highest possible cycle length is equal to 
the number of different possible states in the state vector = 2kb. In many cases, the cycle 
length is less than this value. 
 
The theoretical analysis of a good random number generator can be very difficult. This is a 
serious dilemma: The random number generators that are easy to analyze theoretically tend 
to have poor randomness. If the random number generator has a simple mathematical 
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structure that is easy to analyze, then it is also possible to construct a test that explores this 
structure and the generator will fail this test. 
 
The best generators based on integer algebra with feedback from the high bits to the low 
bits are difficult to analyze theoretically. Thus, the theoretical properties of the Mother-Of-All 
generator have not been analyzed as thoroughly as one may wish. In fact, it took many 

years before the slight bias in this generator was discovered by theoretical analysis2. 

 
Another class of random number generators that are easier to analyze theoretically are 
based on finite field algebra. Addition and multiplication in the finite field F2b are done simply 

by bitwise XOR and AND operations on b-bit integers (C operators ^ and &). These 

generators are known as Linear Feedback Shift Registers (LFSR). The much used 

Mersenne Twister belongs to this class of random number generators6. The transition 
function f consists of only XOR and AND operations, and shift operations for shuffling the 

bits. This type of generators can be constructed with extremely long cycle lengths. 
 
The fact that LFSR generators have a relatively simple mathematical structure also means 
that it is possible to construct tests that they cannot pass. The linear complexity test can 
easily defeat any LFSR generator. This test is based on the Berlekamp-Massey algorithm 
which is an algorithm that detects the structure of an LFSR generator from any bit sequence 

it has generated4. It is no wonder that the LFSR generators fail this test because the 

Berlekamp-Massey algorithm is in fact used during the construction of some LFSR 

generators9. An arguably more relevant test is the binary matrix rank test. All LFSR 

generators fail the binary matrix rank test when a sufficiently large matrix is used4. The 

bigger the state vector in the generator, the bigger a matrix is needed in the test before it 
fails. The standard Mersenne Twister (MT19937) has such a large state vector that it takes 
hours to execute a binary matrix rank test large enough to defeat it. 
 
The Mersenne Twister has an output function Yn = g(Xn) where Yn is used as the random 

number output. The output function g of the Mersenne Twister is called tempering6. The 
tempering function g simply shuffles and XOR's the bits in Xn with each other. You may say 

that this redistributes randomness rather than generate randomness because the value of 
Yn is not fed back into the state vector. A Mersenne Twister without the tempering algorithm 

fails the important gap test. The tempering algorithm takes a significant part of the total 
execution time because it has a dependency chain that prevents parallel execution. 
 

A good random number generator should have chaotic behavior1. The degree of chaos is 

measured by a term which is called bifurcation in chaos theory. This is almost similar to the 

concept of diffusion in cryptology3,8. The bifurcation is the divergence of two trajectories that 

differ in their starting point by only one bit in the state vector. The standard Mersenne 
Twister has very poor bifurcation. For example, it takes many steps to recover from a state 

where most of the bits are zero3. 

 
Certain improvements have been made since the invention of the original Mersenne 
Twister. Two improved generators based on the same principle as the Mersenne Twister 

are the WELL generator 8 and the SFMT generator9. Both have better randomness, better 

bifurcation/diffusion and higher speed than the original Mersenne Twister, and some 
versions do not require the tempering function. 
 
While the WELL generator has better bifurcation/diffusion than the SFMT generator, I have 
chosen the latter for the sake of efficient implementation. The impressive speed of modern 
computers are to a considerable degree due the their ability to do multiple operations 
simultaneously. The amount of parallelism that can be obtained in the software 
implementation is limited by the shortest feedback path in the transition function f. The 
shortest feedback path is 32 bits in the WELL generator, but 128 bits in the SFMT 
generator. This makes it possible to do parallel operations in 128-bit SIMD (Single 
Instruction Multiple Data) registers with the SFMT generator, but not the WELL generator. 
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None of these generators can fully use the 256-bit registers of the AVX instruction set or 
further extensions that are expected to be available in future computers. The SFMT is 
among the fastest random number generators that satisfy our high requirements for 
randomness. 
 
The SFMT generator is specifically designed to take advantage of the SIMD capabilities of 
modern computers. Such capabilities are standard in modern PCs (SSE2 or later instruction 
set), but absent in some older mainframe computers. The portability of the SFMT generator 

is therefore limited. The C++ implementation in the randomc class library requires that the 

computer has the SSE2 instruction set and that the compiler supports it. The 

implementation in the asmlib library includes a branch for supporting old computers 

without SIMD/SSE2. On computers with non x86 instruction sets you need to use the 

original C implementation by Mutsuo Saito9. It would be possible to improve the bifurcation 

of the SFMT generator by using the new carry-less multiplication instruction, but nobody has 
explored this possibility yet. 
 

6.2 Combined generators 

A very efficient method of improving randomness is to combine the outputs of two or more 

different random number generators4,5. In fact, you can get a good random number 

generator out of two or more bad ones, especially if they are very different. The philosophy 
behind this method is quite simple. Combining something non-random with something 
random produces something random. Any "non-randomness" that one of the generators 
may have is eliminated by the other generator as long as the latter does not have the same 
type of weakness. Only if both generators have the same type of weakness will it show in 
the combined output. The combination of two random number generators can be as simple 
as generating a b-bit integer from each generator and adding these two numbers modulo 2b. 
A particular random number generator is suitable for a particular application if there is no 
undesired interaction between generator and application. The risk of an undesired 3-way 
interaction between application, generator 1 and generator 2 is much smaller than the risk 
of an undesired 2-way interaction between the application and a single generator. I have not 
been able to find any experimental evidence of undesired interactions between two random 
number generators, even if they were very similar in design. 
 
I have implemented this principle by allowing the combination of the SFMT generator and 
the Mother-Of-All generator. These two generators are based on different kinds of algebra 
and are therefore very different. A generator based on integer algebra may fail certain tests 
based on integer algebra; and a generator based on finite field algebra is known to fail 
certain tests based on finite field algebra. But each generator eliminates the weaknesses of 
the other one so that the combined generator is as good as we can wish for. The 

advantages of the SFMT generator are long cycle length and high-order equidistribution9. 

The weaknesses are a relatively low bifurcation and the failure to pass certain tests based 
on finite field algebra. The advantages of the Mother-Of-All generator are a very high 
bifurcation and the fact that it passes the most stringent experimental tests for randomness. 
The disadvantages are a slight bias in the most significant bits, lower cycle length, and the 
fact that it is difficult to analyze theoretically so that it may have undetected theoretical 
weaknesses. All of these weaknesses are eliminated by combining the two generators. The 
fact that the two generators are based on fundamentally different algebras makes it unlikely 
that they have any noticeable weakness in common. 
 

6.3 Using multiple streams 

Most modern computers have multiple cores and the trend goes towards an increasing 
number of cores. Time-consuming applications can take advantage of this by dividing the 
work between multiple threads, with each core running one thread. 
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No random number generator is inherently thread-safe. This means that you cannot access 
it from more than one thread simultaneously without running the risk of messing up the 
internal state. Using a mutex is a very inefficient solution. It is much better to have one 
random number generator for each thread so that each thread has its own stream of 
random numbers. This can be done in C++ by making one instance (object) of the random 
number generator class in each thread. 
 
Obviously, the multiple streams of random numbers should be different without any 
correlation between them. Four different ways of avoiding correlation between the streams 

have been proposed in the literature3,7: 

 
1. Use fundamentally different random number generators for each stream. 

   
2. Use similar generators but with different values for various parameters in the 

generator algorithm, such as multiplication factors, shift counts and bit masks. 
   

3. Use identical generators with a jump-ahead feature. If the first stream is expected to 
use at most L random numbers, then the second stream can jump ahead from the 
same starting point (seed) and skip the first L numbers. 

   
4. Use identical generators with different seeds. The probability that the streams have 

overlapping sequences can be reduced to a negligible value if the cycle length is 
sufficiently long. 

 
There is no difference between running multiple threads in parallel and doing the same 
multiple tasks sequentially. The result will be the same. Either a method is good enough for 
both parallel tasks and sequential tasks, or it is good for neither. I have not found it 
necessary to implement any special methods for parallel execution in multiple threads. 
 
Method 1 is not realistic because we have a limited number of random number generator 
algorithms with known good quality. Method 2 requires a computerized search for good 
values of the parameters in the generator algorithm. This search is too slow to be carried on 
online. Instead it is necessary to store a table with as many parameter sets as the maximum 
number of streams in parallel execution or the maximum number of runs in sequential 
execution. This is actually feasible, but the program will be burdened with quite big tables in 
order to be suitable for future computers with ever-increasing capacity. Method 3 is only 
feasible if a fast jump-ahead method is available. Unfortunately, the fast jump-ahead feature 

comes at the cost of slowing down the basic generation of random numbers3. 

 
Method 4 requires that the cycle length is very long. The probability that there is an overlap 
between sequences when we have s streams, each of length L, out of a total cycle length ρ 

is approximately 
 

2

)1( Lss
p


 . 

 
For example, if we make 100 streams of 1010 random numbers each from an SFMT 
generator with cycle length ρ = 211213, we have a probability of overlap  p ≈ 10-3362. This 

probability is so small that we can safely rely on overlaps never happening. There is even 
plenty of room for future increases in the number of streams and their lengths. 
 
A Mersenne Twister or a combined generator has even longer period, hence lower 
probability of overlap. A Mother-Of-All generator has a shorter cycle length so that it cannot 
be considered completely safe to generate multiple streams from a Mother-Of-All generator 
unless it is combined with some other generator with a long cycle length. 
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The above calculations are based on the assumption that each stream starts at a random 
point in the cycle of length ρ and that the starting points are independent. This requires a 
good seeding procedure. The seeding procedure fills the state vector with random numbers 
based on a seed which is typically 32 bits or more. The seeding procedure used in the 
present software uses a separate random number generator of a different design in order to 

avoid any interference. An extra feature is the RandomInitByArray function which makes 

it possible to initialize the random number generator with multiple seeds. We can make sure 
that the streams have different starting points by using the thread id as one of the seeds. 
 

6.4 Deciding the cycle length 

There is no practical limit to how long we can make the cycle length. The advantages of a 
long cycle length are: 
 

 The probability of overlapping subsequences is reduced. 
   

 It is possible to obtain high-order equidistribution on generators with long cycle 
lengths. 

 
The disadvantages of a long cycle length are: 
 

 The search for good parameters becomes more difficult. 
   

 The state vector becomes bigger. This takes more space in memory and cache and 
slows down cache-hungry applications. 

 
The cycle length of 219937 for the standard Mersenne Twister is actually excessive for most 
purposes. I have chosen to implement this cycle length nevertheless for the sake of 
portability. Many software packages have a Mersenne Twister with this cycle length. I have 
chosen a somewhat shorter cycle length for the SFMT generator, but still long enough for 
even very demanding applications. The code can easily be changed to get a different cycle 
length. 
 
 

7 File lists 

Files in randomc.zip 

ran-instructions.pdf This file 

randomc.h Header file for the random number generator classes 

sfmt.h Header file for the SFMT generator 

mersenne.cpp Source code for Mersenne Twister generator 

mother.cpp Source code for Mother-Of-All generator 

sfmt.cpp Source code for SFMT generator 

rancombi.cpp Code for combining two generators 

userintf.cpp Functions that depends on user interface 

ex-ran.cpp Example program generating random numbers 

testirandomx.cpp Test difference between IRandom and IRandomx 

license.txt Gnu general public license 

 
 

Files in asmlib.zip 

See asmlib-instructions.pdf. 
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Files in stocc.zip 

ran-instructions.pdf This file 

distrib.pdf Description of statistical distributions 

sampmet.pdf Description of sampling methods used 

stocc.h Header file for non-uniform random number generators 

randomc.h Header file for uniform random number generators 

stoc1.cpp Source code for Bernoulli, Binomial, Hypergeometric, Normal, 
Poisson, Multinomial, MultiHypergeometric and Shuffle 

stoc2.cpp Alternative source code for Binomial, Hypergeometric, Poisson 

stoc3.cpp Source code for noncentral hypergeometric distributions 

wnchyppr.cpp Code for Wallenius noncentral hypergeometric distribution 

fnchyppr.cpp Code for Fisher's noncentral hypergeometric distribution 

erfres.cpp Auxiliary tables for Wallenius distribution 

erfresmk.cpp Program for making erfres.cpp 

ex-stoc.cpp Example program showing different distributions 

ex-cards.cpp Example program shuffling a deck of cards 

ex-lotto.cpp Example program producing random numbers without duplicates 

ex-evol1.cpp Example program simulating evolution with selective survival 

ex-evol2.cpp Example program simulating evolution with differential fertility 

testbino.cpp Test program for binomial distribution 

testhype.cpp Test program for hypergeometric distribution 

testpois.cpp Test program for Poisson distribution 

testfnch.cpp Test program for Fisher's noncentral hypergeometric distribution 

testmfnc.cpp Test program for multivariate Fisher's noncentral hyp. distrib. 

testwnch.cpp Test program for Wallenius' noncentral hyp. distrib. 

testmwnc.cpp Test program for multivariate Wallenius' noncentral hyp. distrib. 

license.txt Gnu general public license 

 

8 License conditions 
These software libraries are free: You can redistribute the software and/or modify it under 
the terms of the GNU General Public License as published by the Free Software 
Foundation, either version 3 of the License, or any later version. 
 
Commercial licenses are available on request to www.agner.org/contact. 
 
This software is distributed in the hope that it will be useful, but without any warranty; 
without even the implied warranty of merchantability or fitness for a particular purpose. See 

the file license.txt or www.gnu.org/licenses for the license text. 

 
 

9 No support 
Note that this is free software provided without any warranty or support. It is intended for 
skilled programmers only, and it may not be compatible with all compilers and linkers. If you 
have problems using it, then don't. 
 
I am sorry that I do not have the time and resources to provide support for this software. If 
you ask me to help with your programming problems then you will not get any answer. 
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