
Instructions for the random number
generator libraries on www.agner.org

By Agner Fog. Technical University of Denmark
© 2008 - 2014. GNU General Public License.

Version 2.11. 2014-06-14.

Contents
1 Introduction ... 1
2 Randomc package of random number generators ... 2

2.1 Pseudo random number generators in the randomc library ... 2
2.2 C++ classes in the randomc library ... 3

3 Asmlib package of random number generators ... 5
3.1 Pseudo random number generators included in the asmlib library 5
3.2 Physical random number generators included in the asmlib library 5

4 Stocc package of non-uniform generators ... 6
5 Frequently asked questions ... 10

5.1 Getting started .. 10
5.2 Is the random number generator that comes with my compiler good enough? 10
5.3 Which random number generator should I choose? .. 11
5.4 How do I define which random number generator to use? .. 11
5.5 Choosing a seed ... 14
5.6 C++ version or binary library? ... 15
5.7 Multi-threading .. 15
5.8 Calling from other programming languages .. 15
5.9 Position-independent code .. 16
5.10 IRandom or IRandomX? ... 16
5.11 Why is the floating point interval half-open? .. 17
5.12 Generating events with a specific probability... 18
5.13 When is a high resolution needed? ... 19
5.14 Generating non-uniform random numbers .. 19
5.15 Monte Carlo simulation applications .. 20
5.16 Simulating evolution .. 20
5.17 Games and entertainment applications ... 20
5.18 Gambling applications ... 20
5.19 Security applications ... 20
5.20 Error conditions ... 21

6 Theoretical details ... 21
6.1 How pseudo random number generators are constructed ... 21
6.2 Combined generators ... 24
6.3 Using multiple streams .. 24
6.4 Deciding the cycle length .. 26

7 File lists ... 26
8 License conditions ... 27
9 No support... 27
10 Literature ... 27

1 Introduction
This manual describes three packages of uniform and non-uniform random number
generators:

randomc.zip: Uniform random number generators as C++ class libraries

asmlib.zip: Same generators as binary libraries for C, C++ and other languages

stocc.zip: Non-uniform random number generators as C++ class libraries

 2

The random number generators in standard function libraries are not always of the best
quality. With today's fast computers it is possible to make larger computer simulations than
what has been common previously. Large Monte Carlo simulations require better random
number generators. Furthermore, today's multi-core microprocessors require random
number generators with support for multithreading. The present random number generator
libraries are designed for the purpose of meeting these high demands. The advantages of
these packages are:

 Very good randomness

 Very long cycle length

 High resolution

 Support for multiple threads and multiple streams

 Very fast and efficient

 Allow seeds of any length

 Includes Mersenne Twister, Mother-Of-All generator, SFMT generator and
combinations of these

 Discrete uniform distribution over arbitrary interval is exact where other
implementations have rounding errors

 Continuous distributions supported: Uniform and normal

 Discrete distributions supported: Uniform, Poisson, binomial, hypergeometric and
various noncentral hypergeometric distributions

 Open source

 Support for Windows, Linux, BSD, Mac, etc.

The following three packages of random number generator libraries are available here:

 randomc.zip. A C++ class library of uniform random number generators.

 asmlib.zip. The same random number generators as optimized binary code

libraries (*.lib, *.dll, *.a) to link into a software project. Includes support for all

x86 and x86-64 platforms, including 32-bit and 64-bit Windows, Linux, BSD and
Intel-based Mac.

 stocc.zip. Non-uniform random number generators, including the following

probability distributions: Normal, Poisson, Binomial, Hypergeometric, Fisher's
Noncentral Hypergeometric, Wallenius' Noncentral Hypergeometric, etc.

The latest versions of these packages are available from www.agner.org/random.

2 Randomc package of random number generators

2.1 Pseudo random number generators in the randomc library

Mersenne twister

The Mersenne Twister is a random number generator which has become very popular in
recent years because of its long cycle length.

SFMT generator

The "SIMD-oriented Fast Mersenne Twister" (SFMT) is invented by Mutsuo Saito and
Makoto Matsumoto. This is an improvement of the Mersenne Twister with better
randomness and higher speed. It is designed specially for microprocessors with Single-
Instruction-Multiple-Data (SIMD) capabilities, which all modern PCs have.

http://www.agner.org/random/

 3

Mother-of-all generator

The Mother-of-all generator is an older multiply-with-carry generator invented by George
Marsaglia. It uses less memory than the Mersenne Twister.

Combined generator

A combination of the SFMT and the Mother-of-all generators. The randomness is improved
by combining two very different random number generators.

2.2 C++ classes in the randomc library

The randomc.zip package is a C++ class library containing the random number

generators mentioned above. Single-threaded applications need only one instance of the
desired class while multi-threaded applications need one instance for each thread. The
following classes are included:

CRandomMersenne:

Header: randomc.h

Source file: mersenne.cpp

Constructor: CRandomMersenne(int seed);

Description: Mersenne Twister pseudo random number generator.

CRandomMother:

Header: randomc.h

Source file: mother.cpp

Constructor: CRandomMother(int seed);

Description: Mother-of-all pseudo random number generator.

CRandomSFMT:

Header: sfmt.h

Source file: sfmt.cpp

Constructor: CRandomSFMT(int seed, int IncludeMother = 0);

Description: SFMT pseudo random number generator. Optionally combined with Mother-of-

all generator when IncludeMother = 1.

CRandomSFMT1:

Header: sfmt.h

Source file: sfmt.cpp

Constructor: CRandomSFMT1(int seed);

Description: Combined SFMT and Mother-of-all pseudo random number generator. This is

the same as CRandomSFMT with IncludeMother = 1.

See page 21 for a theoretical discussion of these random number generators.

Member functions (methods)

void RandomInit(int seed);

Initialize or re-initialize the random number generator. The value of seed can be any

integer. The same seed always gives the same sequence of random numbers. A different
seed gives a different sequence.

void RandomInitByArray(int const seeds[], int NumSeeds);

Available only in CRandomMersenne and CRandomSFMT.

Initialize or re-initialize the random number generator. Allows any number of seeds.

seeds[] is an array with NumSeeds seeds. A different value of any of the seeds gives a

different sequence of random numbers.

 4

int IRandom(int min, int max);

Generates a random integer n with uniform distribution in the interval min ≤ n ≤ max.
The distribution may be slightly biased due to rounding errors if the interval length (max -

min + 1) is large and not a power of 2. Use IRandomX instead if the highest precision is

required.
Restrictions: max ≥ min and max - min + 1 < 232.

If max - min + 1 = 232, i.e. if you are using the whole range of integers, then use BRandom()

instead.
Error conditions: Returns 0x80000000 if max < min.

int IRandomX(int min, int max);

Available only in CRandomMersenne and CRandomSFMT.

Same as IRandom, but with exactly uniform distribution. See page 16 below for a detailed

explanation. IRandomX takes more time if the length of the interval is different from the last

call.

uint32_t BRandom();

Gives a random 32-bit integer. May be used as 32 random bits.

double Random();

Gives a random floating point number x with uniform distribution in the interval 0 ≤ x < 1.
Resolution: 32 bits in Mersenne Twister and Mother-Of-All generator, 52 bits in SFMT and

combined generator. (A long double version RandomL() with 63 bits resolution is

available for the SFMT and combined generators in the asmlib.zip library).

Overview of member functions

Function

Generator

Mersenne Twister Mother-Of-All SFMT or
combined

Initialize with new
seed

CRandomMersenne::

RandomInit
CRandomMother::

RandomInit
CRandomSFMT::

RandomInit

Initialize by array of
multiple seeds

CRandomMersenne::

RandomInitByArray
 CRandomSFMT::

RandomInitByArray

Integer random CRandomMersenne::

IRandom
CRandomMother::

IRandom
CRandomSFMT::

IRandom

Integer random,
exact

CRandomMersenne::

IRandomX
 CRandomSFMT::

IRandomX

Random bits CRandomMersenne::

BRandom
CRandomMother::

BRandom
CRandomSFMT::

BRandom

Floating point,
32 bits resolution

CRandomMersenne::

Random
CRandomMother::

Random

Floating point,
52 bits resolution

 CRandomSFMT::

Random

Floating point,
63 bits resolution

 (only in asmlib

library)

Compiler requirements

Class C++ compiler Compiler support for
64-bit integers

Compiler support for
SSE2 and intrinsic

functions
CRandomMersenne x - -
CRandomMother x x -
CRandomSFMT x x x

 5

You may use the libraries in the asmlib.zip package (see page 5) if your compiler does

not meet these requirements.

Hardware requirements

CRandomMersenne and CRandomMother will work on any microprocessor for which a

suitable compiler is available.

The C++ version of CRandomSFMT works only on microprocessors with the SSE2 or later

instruction set. All modern PCs have this.

Randomness qualities

Generator Cycle length Passes tests for
randomness

Bifurcation /
diffusion

Resolution of
continuous uniform

distribution

Mersenne twister 219937-1 most low 32 bits

Mother-of-all ≈ 2158 all high 32 bits

SFMT ≥ 211213-1 most high 52 or 63 bits

Combined > 211213-1 all high 52 or 63 bits

See page 21 for a more detailed discussion of the randomness of these generators.

Execution time

The execution times vary a lot depending on the compiler and the optimization possibilities.

The execution times are usually a little longer than for the asmlib library versions. The

SFMT generator is the fastest, but all generators are pretty fast.

3 Asmlib package of random number generators
The asmlib.zip package is a binary code library containing carefully optimized functions

for several different purposes, including random number generation. The Asmlib library is
built in assembly language with optimization for different instruction set extensions. It

replaces the previous package named randoma.zip. The asmlib.zip package is

available from www.agner.org.

3.1 Pseudo random number generators included in the asmlib library

The asmlib.zip package contains the same pseudo random number generators as the

randomc.zip package described above. It contains several different implementations of

these generators for the sake of compatibility with C, C++ and other programming

languages and different platforms. See the file asmlib-instructions.pdf for details.

3.2 Physical random number generators included in the asmlib library

The asmlib.zip library contains the function PhysicalSeed which can generate non-

deterministic random numbers on microprocessors that have a built-in physical random
number generator. It will use the clock counter with sub-nanosecond resolution on
processors that do not have this feature. This function is useful for generating a random
seed for a pseudo random number generator when non-deterministic random numbers are
desired.

C++ prototype
extern "C" int PhysicalSeed(int seeds[], int NumSeeds);

http://www.agner.org/optimize/#asmlib

 6

The array seeds is filled with NumSeeds random integers. The return value indicates the

method used. See asmlib-instructions.pdf for details.

4 Stocc package of non-uniform generators
The stocc.zip package is a C++ class library defining various non-uniform random

number generators with various distributions. The non-uniform generators can be based on

any of the uniform generators in the randomc and asmlib packages, which are used as a

C++ base class.

The following classes are included

StochasticLib1:

Header: stocc.h

Source file: stoc1.cpp

Constructor: StochasticLib1(int seed);

Base class: Any of the classes in randomc.h or asmlibran.h. Set STOC_BASE to the

desired base class.
Defines generators for the following distributions: Bernoulli, Binomial, Hypergeometric,
multivariate Hypergeometric, Multinomial, Normal, Poisson, and a shuffling function.

StochasticLib2:

Header: stocc.h

Source file: stoc2.cpp

Constructor: StochasticLib2(int seed);

Base class: StochasticLib1.

Defines alternative generators for the following distributions: Binomial, Hypergeometric,
Poisson.

The implementations in StochasticLib2 are faster than StochasticLib1 if the

parameters are constant but slower if the parameters are changing.

StochasticLib3:

Header: stocc.h

Source files: stoc3.cpp, fnchyppr.cpp, wnchyppr.cpp, erfres.cpp

Constructor: StochasticLib3(int seed);

Base class: StochasticLib1 (or StochasticLib2).

Defines various noncentral hypergeometric distributions. These distributions are useful for
simulating biased sampling and genetic models of evolution.

Member functions (methods) in StochasticLib1:

int StochasticLib1::Bernoulli(double p);

Bernoulli distribution with probability parameter p.
Returns 1 with probability p, or 0 with probability 1- p.
Error conditions:
Gives error message if p < 0 or p > 1.

int32_t Binomial (int32_t n, double p);

Binomial distribution with parameters n and p.

This is the distribution of the number of red balls you get when drawing n balls with

replacement from an urn where p is the fraction of red balls in the urn. Definition:

 7

xnx pp
x

n
xf

)1()(

Error conditions:

Gives error message if n < 0 or p < 0 or p > 1.

int32_t StochasticLib1::Hypergeometric(int32_t n, int32_t m,

int32_t N);

Hypergeometric distribution with parameters n, m, N. (Note the order of the parameters).
This is the distribution of the number of red balls you get when drawing n balls without
replacement from an urn containing N balls, where m balls are red and N-m balls are white.

Definition:

n

N

xn

mN

x

m

xf)(

Error conditions:
Gives error message if any parameter is negative or n > N or m > N.

void StochasticLib1::MultiHypergeometric(int32_t * destination,

int32_t * source, int32_t n, int colors);

Multivariate hypergeometric distribution. This is the distribution you get when drawing n

balls from an urn without replacement, where there can be any number of colors. This is the

same as the hypergeometric distribution when colors = 2. The number of balls of each

color is returned in destination, which must be an array with colors places. source

contains the number of balls of each color in the urn. source must be an array with

colors places.

Error conditions:

Gives an error message if any parameter is negative or if the sum of the values in source

is less than n. The behavior is unpredictable if source or destination has less than colors

places.

void StochasticLib1::Multinomial(int32_t * destination, int32_t *

source, int32_t n, int colors);

void StochasticLib1::Multinomial(int32_t * destination, double *

source, int32_t n, int colors);

Multivariate binomial distribution. This is the distribution you get when drawing n balls

from an urn with replacement, where there can be any number of colors. This is the same

as the binomial distribution when colors = 2. The number of balls of each color is returned

in destination, which must be an array with colors places. source contains the

number or fraction of balls of each color in the urn. source must be a double or int array

with colors places.

The sum of the values in source does not have to be 1, but it must be positive. The

probability that a ball has color i is source[i] divided by the sum of all values in source.

Error conditions:
Gives an error message if any parameter is negative or if the sum of the values in source is

zero. The behavior is unpredictable if source or destination has less than colors

places.

double StochasticLib1::Normal(double m, double s);

Normal distribution with mean m and standard deviation s. This distribution simulates the

sum of many random factors. Definition:

 8

2

2

2

)(

2

1
)(s

mx

e
s

xf

Error conditions: None.

double StochasticLib1::double NormalTrunc(double m, double s,

double limit);

Truncated normal distribution with mean m and standard deviation s. This is the normal

distribution with the tails cut off at m limit. Values outside the interval (m-limit) ≤ x ≤
(m+limit) are rejected.
Error conditions: Gives error message if limit < s.

int32_t StochasticLib1::Poisson(double L);

Poisson distribution with mean L.

This is the distribution of the number of events in a given time span or a given geographical
area when these events are randomly scattered in time or space. Definition:

Le
x

Lx
xf

!
)(

Error conditions: Gives error message if L < 0 or L > 2∙109.

void StochasticLib1::Shuffle(int * list, int min, int n);

Shuffling a list. This function makes a list of the n numbers from min to min+n-1 in

random order. The result is returned in list, which must be an array with n elements.

The array index goes from 0 to n-1. If you want to shuffle something else than integers then

use the integers in list as an index into a table of the items you want to shuffle.

Error conditions: none. The behavior is unpredictable if the size of the array list is less

than n.

Member functions (methods) in StochasticLib2:

int32_t StochasticLib2::Hypergeometric(int32_t n, int32_t m,

int32_t N);

int32_t StochasticLib2::Binomial(int32_t n, double p);

int32_t StochasticLib2::Poisson(double L);

This is an alternative implementation of the similar functions in StochasticLib1.

StochasticLib2 is faster than StochasticLib1 if the functions are called many times

with the same parameters, but slower than StochasticLib1 if the parameters are

changed. See the file sampmet.pdf for a description of the sampling methods.

Member functions (methods) in StochasticLib3:

void StochasticLib3::SetAccuracy(double accur);

Set the desired accuracy of the subsequent function calls. The default value is 10-8.

int32_t StochasticLib3::FishersNCHyp (int32_t n, int32_t m, int32_t

N, double odds);

The Fisher's noncentral hypergeometric distribution is the distribution of two binomial

variates conditional upon their constant sum. See the file distrib.pdf for a definition.

Execution may be slow and inexact when N is high and odds is far from 1.

 9

Error conditions:

Gives error message if any parameter is negative or n > N or m > N.

int32_t StochasticLib3::WalleniusNCHyp (int32_t n, int32_t m,

int32_t N, double odds);

The Wallenius noncentral hypergeometric distribution is similar to the hypergeometric

distribution, but with bias. The bias can be seen as an odds ratio. odds > 1 will favor the red

balls, and odds < 1 will favor the white balls. It is equal to the hypergeometric distribution

when odds = 1.

Error conditions:

Gives error message if any parameter is negative or n > N or m > N.

void StochasticLib3::MultiFishersNCHyp (int32_t * destination,

int32_t * source, double * weights, int32_t n, int colors);

The multivariate Fisher's noncentral hypergeometric distribution is the distribution of

multiple binomial variates conditional upon their constant sum. See the file distrib.pdf

for a definition. This function may be inexact, but uses an approximation with an accuracy
that is better than 1% in most cases. The precision can be tuned at the expense of higher
calculation times.
Error conditions:
Gives an error message if any parameter is negative or if the total number of balls with

nonzero weight is less than n. The behavior is unpredictable if any of the arrays has less

than colors places.

void StochasticLib3::MultiWalleniusNCHyp (int32_t * destination,

int32_t * source, double * weights, int32_t n, int colors);

Multivariate Wallenius noncentral hypergeometric distribution. This is the distribution
you get when drawing colored balls from un urn without replacement, with bias. See the file

distrib.pdf for a definition. weights is an array with colors places containing the

weight or odds for each color. The probability of drawing a particular ball is proportional to
its weight. This function may be inexact, but uses an approximation with an accuracy that is
better than 1% in almost all cases.
Error conditions:
Gives an error message if any parameter is negative or if the total number of balls with

nonzero weight is less than n. The behavior is unpredictable if any of the arrays has less

than colors places.

void StochasticLib3::MultiComplWalleniusNCHyp (int32_t *

destination, int32_t * source, double * weights, int32_t n, int

colors);

Multivariate complementary Wallenius noncentral hypergeometric distribution. This is

the distribution of the balls that remain in the urn when drawing N-n colored balls from un

urn without replacement, with bias. (N is the sum of source). See the file distrib.pdf for

a definition.

Other functions

void FatalError(const char *ErrorText);

Header: randomc.h

Source file: userintf.cpp

Used internally to generate error messages. There is no portable way of writing error
messages. Systems with a graphical user interface (e.g. Windows) need a pop-up message
box, while console mode programs and other line oriented systems need output to the

standard error output. Therefore, you may have to modify the function FatalError in the

file userintf.cpp to fit your system. This function is called by the library functions in case

of illegal parameter values or other fatal errors. Experience shows that these error

 10

messages are very useful when debugging a program that uses the non-uniform random

number generators. You may even enhance the FatalError function to output additional

debug information about the state of your program.

void EndOfProgram(void);

Header: randomc.h

Source file: userintf.cpp

Program exit used in the program examples. Windows-like environments may require that
the program waits for the user to press a key before exiting, in order to prevent the output
screen image from disappearing. Therefore, you may have to modify the function

EndOfProgram in userintf.cpp to fit your system if you experience this problem.

5 Frequently asked questions

5.1 Getting started

The best way to get started is to try some of the example programs included in

randomc.zip.

Try to compile the file ex-ran.cpp with your C++ compiler and run it. The example

program runs in console mode. It will output a list of random integer numbers, a list of
random floating point numbers, and a list of random 32-bit numbers in hexadecimal
representation.

You may modify the example file to make it do what you want. Use the class member

function IRandom(min,max) to get a random integer in the interval from min to max.

Use the class member function Random() to get a floating point number in the interval from

0 to 1.

Use the class member function BRandom() to get random bits.

The package stocc.zip includes the following examples for generating non-uniform

distributions:

ex-cards.cpp: Shuffle a deck of cards.

ex-lotto.cpp: Picks six random numbers in the interval from 1 to 36 so that no number

occurs more than once.

ex-stoc.cpp: Generates random numbers with various different distributions: Uniform,

normal distribution, Poisson, Binomial and Hypergeometric.

5.2 Is the random number generator that comes with my compiler good
enough?

Historically, the random number generators in standard function libraries have had a very
bad reputation. Many function libraries have been improved in recent years, but it is still
recommended to check the quality of a random number generator before using it for
demanding applications.

Almost any random number generator is good enough for small entertainment applications.
You need only be concerned if you are making large and demanding applications or if
security is a concern.

 11

You need to check the documentation for the random number generator in your standard
function library. If there is little or no documentation then it is probably not very good.

Few standard libraries have multi-threaded random number generators. You need to check
this as well as various features of randomness to decide if a particular random number
generator is good enough for your application.

5.3 Which random number generator should I choose?

All the random number generators in the present packages are very good. In most cases it
does not matter which one you choose.

If portability is important then choose the Mersenne Twister. This generator has become
very popular in recent years due to its long cycle length and high dimensions of
equidistribution. It is available in many different function libraries from different sources and

in many different programming languages. The C++ code in randomc.zip can be

compiled with almost any C++ compiler. Disadvantages: Fails a few of the most stringent
tests for randomness. Poor bifurcation or diffusion, as explained in paragraph 6 page 21
below. Uses more memory than simpler generators.

If memory use is important then use the Mother-Of-All generator. It uses less memory than
the other generators. It has passed stringent tests for randomness. Disadvantages: Shorter
cycle length. Lower dimensions of equidistribution. Theoretically, it has a slight bias in the
most significant bits, but this bias is too small to measure experimentally.

If speed is important then use the SFMT generator for generating random integers. This is
the fastest of the generators in the package and it performs better than the Mersenne
Twister on some criteria of randomness. The floating point random numbers are provided
with a higher resolution at the cost of lower speed, though.
Disadvantages: Portability to other platforms is limited. Fails a few of the most stringent
tests for randomness.

If high resolution is important then use the SFMT generator alone or combined with the
Mother-Of-All generator. The code provides floating point random numbers with a resolution

of 52 bits where the other generators have only 32 bits. The library version in asmlib.zip

also provides 63 bits resolution in a long double. Note that Microsoft compilers do not

support long double precision.

If it is important to get the best possible randomness then use the SFMT generator
combined with the Mother-Of-All generator. This is recommended for the largest multi-
threaded Monte Carlo simulations and Monte Carlo integrations and for applications where
security is a concern.

You may combine any two random number generators. The file rancombi.cpp shows an

example of how to combine the Mersenne Twister and the Mother-Of-All generator.

See page 21 for a theoretical discussion of the difference between the different generators.

5.4 How do I define which random number generator to use?

For uniform random number generators, use the class name for the desired random number
generator. The class names are listed below.

For non-uniform random number generators: Define STOC_BASE to the name of the desired

random number generator class. Include the header file stocc.h after the header file for

the random number generator and after the definition of STOC_BASE.

 12

See examples below.

Random number generator classes using C++ source code:

Generator C++ class Header file needed C++ file needed

Mersenne twister CRandomMersenne randomc.h mersenne.cpp

Mother-of-all CRandomMother randomc.h mother.cpp

SFMT CRandomSFMT sfmt.h sfmt.cpp

Combined SFMT
and Mother-of-all

CRandomSFMT1 sfmt.h sfmt.cpp

Random number generator classes using binary library from asmlib.zip:

Generator C++ class Header file needed Library needed

Mersenne twister CRandomMersenneA asmlibran.h asmlib.zip

Mother-of-all CRandomMotherA asmlibran.h asmlib.zip

SFMT CRandomSFMTA asmlibran.h asmlib.zip

Combined SFMT
and Mother-of-all

CRandomSFMTA1 asmlibran.h asmlib.zip

Example generating 10 random integers from 0 to 99 using Mother-of-all generator:

#include <stdio.h>

#include "randomc.h"

#include "mother.cpp"

int main () {

 int i;

 int seed = 8;

 // make random number generator instance

 CRandomMother ran(seed);

 for (i=0; i<10; i++) {

 printf("\n%2i", ran.IRandom(0,99));

 }

 printf("\n");

 return 0;

}

Same example using asmlib library:

#include <stdio.h>

#include "asmlibran.h"

int main () {

 int i;

 int seed = 8;

 // make random number generator instance

 CRandomMotherA ran(seed);

 for (i=0; i<10; i++) {

 printf("\n%2i", ran.IRandom(0,99));

 }

 printf("\n");

 return 0;

}

 13

For non-uniform random number generators, you need to define STOC_BASE to the name of

the random number generator class. This example writes the numbers from 1 to 10 in
random order, using the SFMT generator:

#include <stdio.h>

#include "randomc.h"

#include "sfmt.h"

#define STOC_BASE CRandomSFMT

// stocc.h must come after headers defining random number

// generators and after the definition of STOC_BASE

#include "stocc.h"

#include "sfmt.cpp"

#include "stoc1.cpp"

#include "userintf.cpp"

int main () {

 int i;

 int seed = 1;

 const int listlen = 10;

 int list[listlen];

 // make non-uniform random number generator instance

 StochasticLib1 ran(seed);

 // make shuffled list

 ran.Shuffle(list, 1, listlen);

 // print out

 for (i = 0; i < listlen; i++) {

 printf(" %2i", list[i]);

 }

 printf("\n");

 return 0;

}

Same example using asmlib library:

#include <stdio.h>

#include "asmlibran.h"

#define STOC_BASE CRandomSFMTA

// stocc.h must come after headers defining random number

// generators and after the definition of STOC_BASE

#include "stocc.h"

#include "stoc1.cpp"

#include "userintf.cpp"

int main () {

 int i;

 int seed = 1;

 const int listlen = 10;

 14

 int list[listlen];

 // make non-uniform random number generator instance

 StochasticLib1 ran(seed);

 // make shuffled list

 ran.Shuffle(list, 1, listlen);

 // print out

 for (i = 0; i < listlen; i++) {

 printf(" %2i", list[i]);

 }

 printf("\n");

 return 0;

}

The reason why we are not using templates with the generator base class as parameter is
that the syntax of accessing base class members when deriving from a template class is not
very intuitive (see www.parashift.com/c++-faq-lite/nondependent-name-lookup-
members.html).

5.5 Choosing a seed

The seed is a start value that is needed for the pseudo random number generators. If you
run a program again with the same seed then you will get exactly the same sequence of
random numbers. If you use a different seed then you will get a different sequence of
random numbers. The seed does not have to be random for the sequence to appear
random. But the seed has to come from an unpredictable source if you want the sequence
of random numbers to be unpredictable.

If you want the sequence to be different every time then you may use the time or some

other changing value as seed. The example ex-ran.cpp uses the time in seconds as

seed. The function ReadTSC which is provided in the asmlib.zip library gives the time as

a clock count with sub-nanosecond resolution. This can be considered a random seed if the
time depends on a command from a human user. But this method can generate only one
random seed for each human-induced event.

Some microprocessors have a built-in physical random number generator, and we can

expect this feature to be ubiquitous in the future. The function PhysicalSeed in

asmlib.zip can make non-deterministic and truly unpredictable seeds on computers that

have this feature.

In the cases of Monte Carlo simulation and Monte Carlo integration applications it is
desirable to have reproducible results as explained below in section 5.15 page 20. Let the
user input the seed or use, for example, 1 in the first simulation, 2 in the second simulation.
etc. The seed does not have to be random.

It may be useful to have multiple sources of randomness for the seed, for example in

security applications. The RandomInitByArray function allows multiple seeds. Not all

seeds have to be random as long as at least one of the seeds has sufficient unpredictability.
Useful sources of seeds are various time functions, thread ID, user ID, various hardware
parameters such as IP number, MAC address, hard disk ID, etc. and all sorts of sound and
video.

Multi-threaded applications must have a different seed for each thread as explained below
in section 5.7 page 15.

http://www.parashift.com/c++-faq-lite/nondependent-name-lookup-members.html
http://www.parashift.com/c++-faq-lite/nondependent-name-lookup-members.html

 15

5.6 C++ version or binary library?

The C++ class library in randoc.zip and the binary library in asmlib.zip provide the

same random number generators. It is mainly a matter of convenience which one you
choose. The main differences are:

 The binary library is faster than the C++ library in most cases, but not all. However,
both libraries are so fast that they contribute little to the total execution time in most
applications.

 The binary library works only on x86 platforms (including Windows, Linux, BSD and
Intel-based Mac computers). The C++ implementations of the Mersenne Twister and
the Mother-Of-All generator work on any platform for which a suitable C++ compiler
is available.

 The C++ implementation is only for applications coded in the C++ language. The
binary library also works with C and several other programming languages.

 The binary library allows a simple C-style function call interface without class objects
for single-thread applications.

 The binary library implementation of the SFMT generator can provide long double
random numbers with a very high resolution of 63 bits.

 The non-uniform generators in stocc.zip can use either the C++ or the binary

library as base.

5.7 Multi-threading

Very time-consuming applications can often take advantage of computers with multiple
microprocessor cores by dividing the work between the microprocessor cores. This requires
that it is logically possible to divide the job into independent sub-jobs that can run in parallel
threads. There should preferably be no communication between the threads. The number of
threads should preferably not be higher than the number of microprocessor cores.

Use any of the random number generator C++ classes in randomc.zip or asmlib.zip

and make one object of the class in each thread.

The threads must use different seeds to make sure that each thread has a unique sequence

of random numbers. It is convenient to use the RandomInitByArray function with two

seeds where one of the seeds is the same for all the threads and the second seed is the
thread number.

If the code is written in C rather than C++ then use the binary library and make a local buffer
in each thread for the internal variables of the random number generator.

The non-uniform random number generators in stocc.zip do not work with the C-style

functions because they need a C++ base class.

5.8 Calling from other programming languages

The asmlib library is designed for calling from C and C++. It is possible to call the library

from other languages if the compiler supports binary library calls.

 16

Some compiled languages such as Fortran may allow static linking of libraries. Other
languages such as Delphi Pascal, C#, Visual Basic and managed C++.NET work better with
dynamic link libraries (DLL). Use the DLL version under Windows if the compiler does not
support static linking or if the static link library is incompatible.

A DLL uses the stdcall calling convention by default. The stdcall versions of the

functions in asmlib.zip have a D suffix on the name.

Linking with Java is particularly difficult. It is necessary to use the Java Native Interface
(JNI).

It is preferred to use the single-thread functions when calling from other languages than C
or C++. If you consider using multiple threads for the sake of speed then you should be
aware that the program will probably run faster if coded in C++.

If you nevertheless decide to make a multi-threaded program in a language other than C or
C++ then you have to use the multi-threaded C functions with a local array as buffer. Note
that arrays are represented differently in different programming languages. You need to
transfer the raw C-style array to the function rather than an array descriptor. See the manual
for the specific compiler for how to link with C-style arrays.

5.9 Position-independent code

Shared objects (*.so) in 32-bit Linux, BSD and Mac require position-independent code.

Special position-independent versions of asmlib are available for building shared objects.

See the manual asmlib-instructions.pdf. Position-independent code is not an issue

in 64-bit systems and in Windows.

5.10 IRandom or IRandomX?

The functions IRandom and IRandomX both give a random integer with uniform distribution

in the inclusive interval from min to max. IRandom is a little faster and a little less accurate

than IRandomX.

The slight error in IRandom can be explained as follows. We have a random number

generator that makes a random integer X in the interval [0,B-1] so that there are B possible
values for X. In our case we have a 32-bit output, so that B = 232. We want to convert this to
an integer Y in the interval [min,max] so that we have L = max-min+1 different possible
values of Y. The simplest way of conversion is

B

XL
Y min

If B is divisible by L then there will be B/L different values of X for each value of Y. If B is not
divisible by L then there will be (B mod L) values in excess so that some of the Y values will

have

L

B
 corresponding X values and some Y values have 1

L

B
 corresponding X values.

In other words, some Y values have higher probability than others.

The Y values that have higher probability are evenly spread over the interval from min to
max so that the mean will still be close to (min+max)/2.

Most random number generator packages have this inaccuracy. It does not help to generate
an integer random number from a floating point random number. The floating point number
still has B possible values so that the problem is the same. The error can be reduced by
using a high resolution (high value of B) but there is still a theoretical error.

 17

If B is much bigger than L then the difference in probability between the Y values will be
small. If L is a power of 2 then B is divisible by L and there will be no error.

The IRandomX function eliminates the inaccuracy by rejecting the excess (B mod L) values

of X. If X happens to have one of the excess values then it is rejected and a new value of X
is generated. This method makes it certain that all values of Y have exactly the same

probability.

The difference between IRandom and IRandomX is illustrated in the example program

testirandomx.cpp. This test program compares the results for IRandom and IRandomX

in the worst case where the value of L is 3/4 of B. The result in this case shows that every
third Y value has a frequency that is double the frequency of the other Y values when

IRandom is used. All Y values have the same frequency when IRandomX is used.

The IRandomX function needs extra time to calculate (B mod L) every time L is changed.

In conclusion, it is recommended to use IRandomX when L is very large and not a power of

2 and you need high precision.

If L is less than around 1000 then the error is so small that it does not show even in large

statistical tests. In this case it is acceptable to use IRandom.

5.11 Why is the floating point interval half-open?

The Random function generates random floating point numbers Y in the interval 0 ≤ Y < 1.

This has to do with quantification. There is a finite number of possible Y values and we want

these values to be evenly spaced. The spacing is always a negative power of 2, for example
2-32, because of the binary representation. If the spacing between possible Y values is 2-b
then there are 2b possible values in the interval 0 ≤ Y < 1, but 2b+1 possible values in the
interval 0 ≤ Y ≤ 1. The floating point value Y is generated from a b-bit integer X in the interval
0 ≤ X < 2b by calculating Y = X / 2b. It would be difficult to generate 2b+1 different Y values
from 2b different X values.

However, the choice of a half-open interval for X is not only a matter of making the

generation simple. It is also desirable for certain reasons. Assume that we want to generate
an event with a specific probability p, for example p = 0.5. In the C++ code we can write, for

example:

CRandomMersenne RanGen(time(0));

double Y = RanGen.Random();

double p = 0.5;

if (Y < p) {

 // This will happen with probability p

}

The above code generates an event with probability p because the fraction of possible Y
values less than p is equal to p. If Y had 2b+1 possible values in the interval 0 ≤ Y ≤ 1 then
the probability of Y < p would be approximately p - 2-b-1, and the probability of Y ≤ p would be
approximately p + 2-b-1. In other words, it is impossible to generate an event with exactly the
probability p if we use the closed interval 0 ≤ Y ≤ 1, but easy if we use the half-open interval
0 ≤ Y < 1. Generating events with specific probabilities is perhaps the most important

application of random number generators. Therefore it is desirable to have the half-open
interval 0 ≤ Y < 1.

On the other hand, the mean of Y is not exactly 0.5 as we would like the mean of a uniform
distribution to be, but 0.5 - 2-b-1. If we have a symmetric interval, i.e. 0 ≤ Y ≤ 1 or 0 < Y < 1

then the mean will be exactly 0.5.

 18

So, as long as the random number is quantified we cannot have exactness in both the
generation of events with specific probabilities and exactness in the mean at the same time.

Fortunately, the error is very small. With a resolution of b = 32 bits the error in the mean will

be so small that we cannot detect it in a statistical test with a realistic sample size. In other
words, the error is theoretical only and has no practical significance. And we can reduce the
error further by choosing a higher resolution. The present packages offer random numbers
with resolutions as high as 52 or 63 bits.

The difference between the probabilities of Y < p and Y ≤ p may look confusing to a

mathematician because math textbooks usually assume infinite precision so that the two
probabilities are the same. Theoretical math books rarely make this kind of distinctions and
it may be quite arbitrary whether a book specifies open or closed intervals for uniform
random numbers. Half-open intervals for random numbers are more likely to be seen in
computer books than in math books. You should not be concerned about a math book
specifying e.g. a closed interval when in fact you have a half-open interval.

It is possible to manipulate the generators to get different output intervals, but this should be
done only if there is a very specific reason to do so. Examples:

CRandomSFMTA1 RanGen(time(0));

double r1, r2, r3, r4, r5;

// Random number in interval 0 <= r1 < 1

r1 = RanGen.Random();

// Random number in interval 0 < r2 <= 1

r2 = 1.0 - RanGen.Random();

// Random number in interval 0 < r3 < 1

do {

 r3 = RanGen.Random();

} while (r3 == 0); // Reject r3 if 0

// Random number in interval 0 <= r4 <= 1

// (round from long double to double)

r4 = (double)RanGen.RandomL();

// Random number in interval a <= r5 < b

const double a = 5., b = 8.;

r5 = a + (b-a)*RanGen.Random();

In the r4 example we are rounding from long double to double so that values very

close to 1 will be rounded to 1. This is not necessary for the sake of precision, but it may be
useful if you want to make sure that the exact values 0 and 1 can actually both occur

(though very rarely). Note that the long double function RandomL is available only in the

binary library SFMT generator and that Microsoft compilers do not support long double

precision.

5.12 Generating events with a specific probability

There are various ways to generate an event with a specific probability. If you want to

generate an event with probability p, where p is a floating point number, then use for

example:

CRandomMersenne RanGen(time(0));

double p = 0.25;

if (RanGen.Random() < p) {

 // This will happen with probability p

 19

}

There is another way if the probability is a rational number. For example, to generate an

event with probability P/Q where P and Q are positive integers:

CRandomMersenne RanGen(time(0));

const int P = 7, Q = 20;

if (RanGen.IRandom(1,Q) <= P) {

 // This will happen with probability P/Q

}

This method is exact if we use IRandomX.

If Q is a power of 2 then it is faster to use random bits:

CRandomMersenne RanGen(time(0));

const int P = 5, Q = 16;

if ((RanGen.BRandom() & (Q-1)) < P) {

 // This will happen with probability P/Q if Q is a power of 2

}

Special cases:

CRandomMersenne RanGen(time(0));

if (RanGen.BRandom() & 1) {

 // This will happen with probability 1/2

}

if ((RanGen.BRandom() & 3) == 0) {

 // This will happen with probability 1/4

}

if (RanGen.BRandom() & 3) {

 // This will happen with probability 3/4

}

5.13 When is a high resolution needed?

The floating point random numbers are available with resolutions of 32, 52 or 63 bits. See
the table on page 5 for details. A resolution of 32 bits means that the interval from 0 to 1 is
divided into 232 different points, and the minimum distance between two different random
numbers is 2-32 ≈ 2∙10-10. Events with a probability lower than this cannot be simulated when
a resolution of 32 bits is used. Large simulation studies need a higher resolution if you want
to make sure that events with extremely low probabilities can be simulated correctly. Higher
resolutions take longer time to generate.

5.14 Generating non-uniform random numbers

Monte Carlo simulations may require random variates with a specific probability distribution,

such as normal or Poisson distribution. The variate generators are in stocc.zip. These

variate generators convert a random number with uniform distribution to the desired
distribution, e.g. a Poisson distribution. The basic generator can be any of the random

number generators in randomc.zip or asmlib.zip. See page 11 for how to specify

which generator to use.

The program example ex-stoc.cpp makes random numbers with uniform, normal,

Poisson, binomial and hypergeometric distributions.

See the file distrib.pdf for definition of the distributions and the file sampmet.pdf for a

description of the sampling methods used.

 20

5.15 Monte Carlo simulation applications

The name Monte Carlo is traditionally used for computer simulation of processes that
include random events. Depending on the application, you may need uniform or non-
uniform random numbers.

The value of the seed for the random number generator should be input by the user. If the
simulation shows a particularly interesting behavior then the user can replay the simulation
with the same seed to study this behavior in more detail, or repeat with a different seed to
see if the unusual behavior disappears. The seeds can be simple numbers such as 1, 2, 3.
They do not have to be particularly random.

Very time-consuming simulations may be split up into multiple threads on a computer with
multiple microprocessor cores. See chapter 5.7 on page 15 above.

Monte Carlo integration can be implemented in the same way.

5.16 Simulating evolution

The non-central hypergeometric distributions are useful for simulating Darwinian models of

evolution. This is illustrated in the example programs ex-evol1.cpp and ex-evol2.cpp.

ex-evol1.cpp simulates evolution based on competition and selective survival of

individuals with different phenotypes.

ex-evol2.cpp simulates evolution based on differential breeding where the breeding

success depends on the phenotypes of both parents.

See also www.agner.org/evolution for a complete simulation program with graphical
representation of the results.

These distributions are also available in the R-language package BiasedUrn.

It is recommended to use pseudo random number generators with a high resolution and
long cycle length in order to correctly simulate events with extremely low probability such as
rare combinations of mutations.

5.17 Games and entertainment applications

The quality of the random number generator is not very critical for entertaining games etc.
Any random number generator will do.

5.18 Gambling applications

Personally, I consider gambling an unethical exploitation of certain human psychological
and mental weaknesses. Consequently I do not endorse the use of this software for
commercial gambling applications.

5.19 Security applications

On most pseudo random number generators it is possible to reconstruct all past and future
numbers in the random number sequence from a subsequence of a certain length. This also
applies to the generators used in the present packages. On the "linear feedback shift
register" types (Mersenne Twister and SFMT generator) this is possible even without
knowing the structure of the generator.

http://www.agner.org/evolution
http://cran.r-project.org/web/packages/BiasedUrn/index.html

 21

The reconstruction of a random sequence becomes much more difficult when two or more
different random number generators of fundamentally different design are combined. Both
generators should have a cycle length too long for trying all possible combinations. You may
use the combination of the SFMT and the Mother-Of-All generator or the Mersenne Twister
and the Mother-Of-All generator.

A single 32-bit seed can be a security problem because an attacker with a powerful
computer can try all possible seeds in a reasonable amount of time. Use

RandomInitByArray with multiple seeds of different origin for higher security. See

chapter 5.5 on page 14 above.

The PhysicalSeed function in asmlib.zip can provide truly unpredictable seeds on

computers that have a built-in physical random number generator.

These precautions should be taken if the random number generators are used for
generating random passwords, encryption and other security applications.

5.20 Error conditions

There is no standardized and portable way of generating error messages in a C or C++
function library. I have not used structured exception handling because this could slow down
the execution of error-free programs and because of compatibility problems across diverse
platforms, compilers and programming languages.

The randomc.zip package has no specific error reporting. It is assumed that constructors

are always called so that class data are initialized properly. The IRandom and IRandomX

functions return 0x80000000 if max < min or max - min + 1 ≥ 232.

The asmlib.zip package reports errors simply by provoking a divide-by-zero error. This

may happen if a random number generator is not initialized before it is used or if the

specified buffer size is insufficient. The IRandom and IRandomX functions return

0x80000000 if max and min are out of range as specified above.

The stocc.zip package reports errors by calling the FatalError function in

unserintf.cpp. This happens if any parameter is out of range. You may modify the

FatalError function to fit the user interface of your program.

6 Theoretical details

6.1 How pseudo random number generators are constructed

The main criteria for a good pseudo random number generator are: good randomness as
evaluated by theoretical as well as experimental tests, long cycle length, and fast generation
of random numbers.

A random number generator is typically based on a recursion of the form:

),,,(21 knnnn XXXfX

where the transition function f calculates each new value Xn from the k preceding values.
The transition function f can use either integer (Euclidian) algebra modulo some value m, or

finite field algebra.

 22

The generators based on integer algebra use addition and/or multiplication. For example, a
simple linear congruential generator has the form:

mbaXX nn mod)(1

The modulo operation is easy to implement if m = 2b, where b is the number of bits in a

computer word. To take a value modulo 2b is simply to ignore the carry and use only the
lower b bits of the result.

In some cases, a better randomness can be obtained by making m a prime. However, this
implies a rounding error which most theorists have ignored. Assume, for example, that we
have chosen m = 231-1, which is a prime. We want to convert Xn to a floating-point uniform
random number Un = Xn/m in the interval [0,1). The representation of floating-point numbers
(IEEE 754 standard) is quantified so that the maximum number of equidistant points in the
interval [0,1) is a power of 2 (224, 253 or 264, depending on the precision). To get equidistant
values of Un, we will need to space the values by 2-31. There are only 231-1 possible values
of Xn, so one of the values in the interval [0,1) will be missing and the distribution will not be

perfectly uniform. For this reason, I have chosen not to use any random number generator
where m is not a power of 2.

If the transition function f contains only simple algebraic operations such as addition and
multiplication then there is information flow from the least significant bits of the X values to

the most significant bits through the carries, but no information flow in the opposite direction.
The consequence of this is that the least significant bits of each X form an independent

random number generator with inferior randomness. The most significant bits are more
random than the least significant bits. This is unacceptable since some applications may
rely on the least significant bits. For example, it is quite common to have an application that
tests whether Xn is odd or even, which is determined only by the least significant bit. To
avoid this problem, it is necessary to establish a feedback from the most significant bits to
the least significant bits. This is done in the multiply-with-carry generator, which adds the
upper bits of a multiplication result to the lower bits. A multiply-with-carry generator with
more than one factor is the Mother-Of-All generator invented by George Marsaglia:

nn

nn

nknknn

SbC

SbX

CXaXaS

 of bits upper

 of bits lower

11

This generator has very good randomness and passes all tests in the powerful TestU01

battery of tests for randomness4. A minor drawback of this generator2 is that it has a slight
bias in the upper bits of Xn. This bias is too small to show in any experimental tests.

The present package uses a Mother-Of-All generator with k = 4 and b = 32. The transition

function involves four multiplications of 32-bit factors into 64-bit products and addition of
these 64-bit products. It is required that the compiler supports such 64-bit operations, or it
must be coded in assembly language.

Some measures of randomness are better determined by theoretical analysis than by
experiment. Most importantly, the cycle length should preferably be so long that it cannot be
determined experimentally. The cycle length is the number of random numbers that can be
generated before the sequence is repeated. The highest possible cycle length is equal to
the number of different possible states in the state vector = 2kb. In many cases, the cycle
length is less than this value.

The theoretical analysis of a good random number generator can be very difficult. This is a
serious dilemma: The random number generators that are easy to analyze theoretically tend
to have poor randomness. If the random number generator has a simple mathematical

 23

structure that is easy to analyze, then it is also possible to construct a test that explores this
structure and the generator will fail this test.

The best generators based on integer algebra with feedback from the high bits to the low
bits are difficult to analyze theoretically. Thus, the theoretical properties of the Mother-Of-All
generator have not been analyzed as thoroughly as one may wish. In fact, it took many

years before the slight bias in this generator was discovered by theoretical analysis2.

Another class of random number generators that are easier to analyze theoretically are
based on finite field algebra. Addition and multiplication in the finite field F2b are done simply

by bitwise XOR and AND operations on b-bit integers (C operators ^ and &). These

generators are known as Linear Feedback Shift Registers (LFSR). The much used

Mersenne Twister belongs to this class of random number generators6. The transition
function f consists of only XOR and AND operations, and shift operations for shuffling the

bits. This type of generators can be constructed with extremely long cycle lengths.

The fact that LFSR generators have a relatively simple mathematical structure also means
that it is possible to construct tests that they cannot pass. The linear complexity test can
easily defeat any LFSR generator. This test is based on the Berlekamp-Massey algorithm
which is an algorithm that detects the structure of an LFSR generator from any bit sequence

it has generated4. It is no wonder that the LFSR generators fail this test because the

Berlekamp-Massey algorithm is in fact used during the construction of some LFSR

generators9. An arguably more relevant test is the binary matrix rank test. All LFSR

generators fail the binary matrix rank test when a sufficiently large matrix is used4. The

bigger the state vector in the generator, the bigger a matrix is needed in the test before it
fails. The standard Mersenne Twister (MT19937) has such a large state vector that it takes
hours to execute a binary matrix rank test large enough to defeat it.

The Mersenne Twister has an output function Yn = g(Xn) where Yn is used as the random

number output. The output function g of the Mersenne Twister is called tempering6. The
tempering function g simply shuffles and XOR's the bits in Xn with each other. You may say

that this redistributes randomness rather than generate randomness because the value of
Yn is not fed back into the state vector. A Mersenne Twister without the tempering algorithm

fails the important gap test. The tempering algorithm takes a significant part of the total
execution time because it has a dependency chain that prevents parallel execution.

A good random number generator should have chaotic behavior1. The degree of chaos is

measured by a term which is called bifurcation in chaos theory. This is almost similar to the

concept of diffusion in cryptology3,8. The bifurcation is the divergence of two trajectories that

differ in their starting point by only one bit in the state vector. The standard Mersenne
Twister has very poor bifurcation. For example, it takes many steps to recover from a state

where most of the bits are zero3.

Certain improvements have been made since the invention of the original Mersenne
Twister. Two improved generators based on the same principle as the Mersenne Twister

are the WELL generator 8 and the SFMT generator9. Both have better randomness, better

bifurcation/diffusion and higher speed than the original Mersenne Twister, and some
versions do not require the tempering function.

While the WELL generator has better bifurcation/diffusion than the SFMT generator, I have
chosen the latter for the sake of efficient implementation. The impressive speed of modern
computers are to a considerable degree due the their ability to do multiple operations
simultaneously. The amount of parallelism that can be obtained in the software
implementation is limited by the shortest feedback path in the transition function f. The
shortest feedback path is 32 bits in the WELL generator, but 128 bits in the SFMT
generator. This makes it possible to do parallel operations in 128-bit SIMD (Single
Instruction Multiple Data) registers with the SFMT generator, but not the WELL generator.

 24

None of these generators can fully use the 256-bit registers of the AVX instruction set or
further extensions that are expected to be available in future computers. The SFMT is
among the fastest random number generators that satisfy our high requirements for
randomness.

The SFMT generator is specifically designed to take advantage of the SIMD capabilities of
modern computers. Such capabilities are standard in modern PCs (SSE2 or later instruction
set), but absent in some older mainframe computers. The portability of the SFMT generator

is therefore limited. The C++ implementation in the randomc class library requires that the

computer has the SSE2 instruction set and that the compiler supports it. The

implementation in the asmlib library includes a branch for supporting old computers

without SIMD/SSE2. On computers with non x86 instruction sets you need to use the

original C implementation by Mutsuo Saito9. It would be possible to improve the bifurcation

of the SFMT generator by using the new carry-less multiplication instruction, but nobody has
explored this possibility yet.

6.2 Combined generators

A very efficient method of improving randomness is to combine the outputs of two or more

different random number generators4,5. In fact, you can get a good random number

generator out of two or more bad ones, especially if they are very different. The philosophy
behind this method is quite simple. Combining something non-random with something
random produces something random. Any "non-randomness" that one of the generators
may have is eliminated by the other generator as long as the latter does not have the same
type of weakness. Only if both generators have the same type of weakness will it show in
the combined output. The combination of two random number generators can be as simple
as generating a b-bit integer from each generator and adding these two numbers modulo 2b.
A particular random number generator is suitable for a particular application if there is no
undesired interaction between generator and application. The risk of an undesired 3-way
interaction between application, generator 1 and generator 2 is much smaller than the risk
of an undesired 2-way interaction between the application and a single generator. I have not
been able to find any experimental evidence of undesired interactions between two random
number generators, even if they were very similar in design.

I have implemented this principle by allowing the combination of the SFMT generator and
the Mother-Of-All generator. These two generators are based on different kinds of algebra
and are therefore very different. A generator based on integer algebra may fail certain tests
based on integer algebra; and a generator based on finite field algebra is known to fail
certain tests based on finite field algebra. But each generator eliminates the weaknesses of
the other one so that the combined generator is as good as we can wish for. The

advantages of the SFMT generator are long cycle length and high-order equidistribution9.

The weaknesses are a relatively low bifurcation and the failure to pass certain tests based
on finite field algebra. The advantages of the Mother-Of-All generator are a very high
bifurcation and the fact that it passes the most stringent experimental tests for randomness.
The disadvantages are a slight bias in the most significant bits, lower cycle length, and the
fact that it is difficult to analyze theoretically so that it may have undetected theoretical
weaknesses. All of these weaknesses are eliminated by combining the two generators. The
fact that the two generators are based on fundamentally different algebras makes it unlikely
that they have any noticeable weakness in common.

6.3 Using multiple streams

Most modern computers have multiple cores and the trend goes towards an increasing
number of cores. Time-consuming applications can take advantage of this by dividing the
work between multiple threads, with each core running one thread.

 25

No random number generator is inherently thread-safe. This means that you cannot access
it from more than one thread simultaneously without running the risk of messing up the
internal state. Using a mutex is a very inefficient solution. It is much better to have one
random number generator for each thread so that each thread has its own stream of
random numbers. This can be done in C++ by making one instance (object) of the random
number generator class in each thread.

Obviously, the multiple streams of random numbers should be different without any
correlation between them. Four different ways of avoiding correlation between the streams

have been proposed in the literature3,7:

1. Use fundamentally different random number generators for each stream.

2. Use similar generators but with different values for various parameters in the

generator algorithm, such as multiplication factors, shift counts and bit masks.

3. Use identical generators with a jump-ahead feature. If the first stream is expected to
use at most L random numbers, then the second stream can jump ahead from the
same starting point (seed) and skip the first L numbers.

4. Use identical generators with different seeds. The probability that the streams have

overlapping sequences can be reduced to a negligible value if the cycle length is
sufficiently long.

There is no difference between running multiple threads in parallel and doing the same
multiple tasks sequentially. The result will be the same. Either a method is good enough for
both parallel tasks and sequential tasks, or it is good for neither. I have not found it
necessary to implement any special methods for parallel execution in multiple threads.

Method 1 is not realistic because we have a limited number of random number generator
algorithms with known good quality. Method 2 requires a computerized search for good
values of the parameters in the generator algorithm. This search is too slow to be carried on
online. Instead it is necessary to store a table with as many parameter sets as the maximum
number of streams in parallel execution or the maximum number of runs in sequential
execution. This is actually feasible, but the program will be burdened with quite big tables in
order to be suitable for future computers with ever-increasing capacity. Method 3 is only
feasible if a fast jump-ahead method is available. Unfortunately, the fast jump-ahead feature

comes at the cost of slowing down the basic generation of random numbers3.

Method 4 requires that the cycle length is very long. The probability that there is an overlap
between sequences when we have s streams, each of length L, out of a total cycle length ρ

is approximately

2

)1(Lss
p

 .

For example, if we make 100 streams of 1010 random numbers each from an SFMT
generator with cycle length ρ = 211213, we have a probability of overlap p ≈ 10-3362. This

probability is so small that we can safely rely on overlaps never happening. There is even
plenty of room for future increases in the number of streams and their lengths.

A Mersenne Twister or a combined generator has even longer period, hence lower
probability of overlap. A Mother-Of-All generator has a shorter cycle length so that it cannot
be considered completely safe to generate multiple streams from a Mother-Of-All generator
unless it is combined with some other generator with a long cycle length.

 26

The above calculations are based on the assumption that each stream starts at a random
point in the cycle of length ρ and that the starting points are independent. This requires a
good seeding procedure. The seeding procedure fills the state vector with random numbers
based on a seed which is typically 32 bits or more. The seeding procedure used in the
present software uses a separate random number generator of a different design in order to

avoid any interference. An extra feature is the RandomInitByArray function which makes

it possible to initialize the random number generator with multiple seeds. We can make sure
that the streams have different starting points by using the thread id as one of the seeds.

6.4 Deciding the cycle length

There is no practical limit to how long we can make the cycle length. The advantages of a
long cycle length are:

 The probability of overlapping subsequences is reduced.

 It is possible to obtain high-order equidistribution on generators with long cycle
lengths.

The disadvantages of a long cycle length are:

 The search for good parameters becomes more difficult.

 The state vector becomes bigger. This takes more space in memory and cache and
slows down cache-hungry applications.

The cycle length of 219937 for the standard Mersenne Twister is actually excessive for most
purposes. I have chosen to implement this cycle length nevertheless for the sake of
portability. Many software packages have a Mersenne Twister with this cycle length. I have
chosen a somewhat shorter cycle length for the SFMT generator, but still long enough for
even very demanding applications. The code can easily be changed to get a different cycle
length.

7 File lists

Files in randomc.zip

ran-instructions.pdf This file

randomc.h Header file for the random number generator classes

sfmt.h Header file for the SFMT generator

mersenne.cpp Source code for Mersenne Twister generator

mother.cpp Source code for Mother-Of-All generator

sfmt.cpp Source code for SFMT generator

rancombi.cpp Code for combining two generators

userintf.cpp Functions that depends on user interface

ex-ran.cpp Example program generating random numbers

testirandomx.cpp Test difference between IRandom and IRandomx

license.txt Gnu general public license

Files in asmlib.zip

See asmlib-instructions.pdf.

 27

Files in stocc.zip

ran-instructions.pdf This file

distrib.pdf Description of statistical distributions

sampmet.pdf Description of sampling methods used

stocc.h Header file for non-uniform random number generators

randomc.h Header file for uniform random number generators

stoc1.cpp Source code for Bernoulli, Binomial, Hypergeometric, Normal,
Poisson, Multinomial, MultiHypergeometric and Shuffle

stoc2.cpp Alternative source code for Binomial, Hypergeometric, Poisson

stoc3.cpp Source code for noncentral hypergeometric distributions

wnchyppr.cpp Code for Wallenius noncentral hypergeometric distribution

fnchyppr.cpp Code for Fisher's noncentral hypergeometric distribution

erfres.cpp Auxiliary tables for Wallenius distribution

erfresmk.cpp Program for making erfres.cpp

ex-stoc.cpp Example program showing different distributions

ex-cards.cpp Example program shuffling a deck of cards

ex-lotto.cpp Example program producing random numbers without duplicates

ex-evol1.cpp Example program simulating evolution with selective survival

ex-evol2.cpp Example program simulating evolution with differential fertility

testbino.cpp Test program for binomial distribution

testhype.cpp Test program for hypergeometric distribution

testpois.cpp Test program for Poisson distribution

testfnch.cpp Test program for Fisher's noncentral hypergeometric distribution

testmfnc.cpp Test program for multivariate Fisher's noncentral hyp. distrib.

testwnch.cpp Test program for Wallenius' noncentral hyp. distrib.

testmwnc.cpp Test program for multivariate Wallenius' noncentral hyp. distrib.

license.txt Gnu general public license

8 License conditions
These software libraries are free: You can redistribute the software and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.

Commercial licenses are available on request to www.agner.org/contact.

This software is distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose. See

the file license.txt or www.gnu.org/licenses for the license text.

9 No support
Note that this is free software provided without any warranty or support. It is intended for
skilled programmers only, and it may not be compatible with all compilers and linkers. If you
have problems using it, then don't.

I am sorry that I do not have the time and resources to provide support for this software. If
you ask me to help with your programming problems then you will not get any answer.

10 Literature
1. Cernak, J: Digital Generators of Chaos. Physics Letters A, vol. 214, 1996, pp. 151-160.

http://www.fsf.org/
http://www.fsf.org/
http://www.agner.org/contact
http://www.gnu.org/licenses/

 28

2. Couture, R; L'Ecuyer, P: Distribution properties of Multiply-With-Carry Random Number
Generators. Mathematics of Computation, Vol. 66, p. 591-607, 1997.

3. L'Ecuyer, P; Panneton, F: Fast Random Number Generators based on Linear Recurrences
Modulo 2: Overview and Comparison. Proceedings of the 2005 Winter Simulation Conference.

M. E. Kuhl et. al. eds. 2005. www.iro.umontreal.ca/~lecuyer/papers.html
4. L'Ecuyer, P; Simard, R: TestU01: A C Library for Empirical Testing of Random Number

Generators. ACM Transactions on Mathematical Software, vol. 33, no. 4, 2007.

www.iro.umontreal.ca/~simardr/testu01/tu01.html
5. Marsaglia, G: A Current View of Random Number Generators. Proc. Computer Science and

Statistics: 16th Symposium on the Interface, Atlanta 1984. Elsevier Press.
6. Matsumoto, M; Nishimura, T: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform

Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation,
vol. 8, no. 1, 1998, pp. 3-30.

7. Matsumoto, M; Nishimura, T: Dynamic Creation of Pseudorandom Number Generators. In:
Niederreiter, H; Spanier, J., eds: Monte Carlo and Quasi-Monte Carlo Methods 1998. Springer,

2000, pp 56-69. www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
8. Panneton, F; L'Ecuyer, P; Matsumoto, M: Improved Long-Period Generators Based on Linear

Recurrences Modulo 2. ACM Transactions on Mathematical Software, vol. 32, no. 1, 2006, pp. 1-
16.

9. Saito, M; Matsumoto, M: SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom
Number Generator. In: Keller, A; et. al., eds: Monte Carlo and Quasi-Monte Carlo Methods 2006.

Springer, 2008, pp. 607-622. www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/.

http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/

	1 Introduction
	2 Randomc package of random number generators
	2.1 Pseudo random number generators in the randomc library
	Mersenne twister
	SFMT generator
	Mother-of-all generator
	Combined generator

	2.2 C++ classes in the randomc library
	Member functions (methods)
	Overview of member functions
	Compiler requirements
	Hardware requirements
	Randomness qualities
	Execution time

	3 Asmlib package of random number generators
	3.1 Pseudo random number generators included in the asmlib library
	3.2 Physical random number generators included in the asmlib library

	4 Stocc package of non-uniform generators
	The following classes are included
	Member functions (methods) in StochasticLib1:
	Member functions (methods) in StochasticLib2:
	Member functions (methods) in StochasticLib3:
	Other functions

	5 Frequently asked questions
	5.1 Getting started
	5.2 Is the random number generator that comes with my compiler good enough?
	5.3 Which random number generator should I choose?
	5.4 How do I define which random number generator to use?
	5.5 Choosing a seed
	5.6 C++ version or binary library?
	5.7 Multi-threading
	5.8 Calling from other programming languages
	5.9 Position-independent code
	5.10 IRandom or IRandomX?
	5.11 Why is the floating point interval half-open?
	5.12 Generating events with a specific probability
	5.13 When is a high resolution needed?
	5.14 Generating non-uniform random numbers
	5.15 Monte Carlo simulation applications
	5.16 Simulating evolution
	5.17 Games and entertainment applications
	5.18 Gambling applications
	5.19 Security applications
	5.20 Error conditions

	6 Theoretical details
	6.1 How pseudo random number generators are constructed
	6.2 Combined generators
	6.3 Using multiple streams
	6.4 Deciding the cycle length

	7 File lists
	Files in randomc.zip
	Files in asmlib.zip
	Files in stocc.zip

	8 License conditions
	9 No support
	10 Literature

