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1 Introduction 
This is the fifth in a series of five manuals: 
 

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac 
platforms. 
 

2. Optimizing subroutines in assembly language: An optimization guide for x86 
platforms. 
 

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for 
assembly programmers and compiler makers. 
 

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation 
breakdowns for Intel, AMD and VIA CPUs. 
 

5. Calling conventions for different C++ compilers and operating systems. 
 
The latest versions of these manuals are always available from www.agner.org/optimize. 
Copyright conditions are listed on page 60 below. 
 
The present manual describes technical details about compilers that are often poorly 
documented or not documented at all. This includes differences between various C++ 
compilers that affect binary compatibility, such as memory model, data storage, function 
calling conventions, and name mangling. These details are described in detail for each 
compiler or for each platform, where appropriate. 
 
The purposes of publishing this information are: 
 

• Point out incompatibilities between compilers. 
 

• Make new compilers compatible with old ones. 
 

• Solve compatibility problems between function libraries produced by different 
compilers. 
 

• Facilitate linking different programming languages together. 
 

• Facilitate the making of assembly subroutines that are compatible with multiple 
compilers and multiple operating systems. 
 

• Solve compatibility problems for data stored in binary files. 
 

• Facilitate the construction of debugging, profiling and disassembly tools. 
 

• Facilitate the construction of object file conversion utilities. 
 

• Provoke compiler vendors to use open standards. 
 

• Inspire future standardization. 
 
Hardware platforms covered: 
 

• x86 microprocessors with 16 bit, 32 bit and 64 bit architectures from Intel, AMD, VIA 
and possibly other vendors. 

 

http://www.agner.org/optimize
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The IA64 architecture, which is implemented in Intel's Itanium processor, is not compatible 
with the x86 architecture, and is not covered in this report. 
 
Operating systems covered: 
 

• DOS, 16 bit. 

• Windows, 16 bit, 32 bit and 64 bit. 

• Linux, 32 bit and 64 bit. 

• FreeBSD etc. 32 bit and 64 bit. 

• Mac OS X, Intel based, 32 bit and 64 bit. 
 
C++ compilers tested: 
 

• Borland, 16 bit v. 3.0 and 5.0 

• Microsoft, 16 bit, v. 8.0 

• Watcom, 16 bit v. 1.2 

• Borland 32 bit v. 5.0 

• Microsoft, 32 bit, v. 9.0, 13.10, 16.3 

• Gnu, 32 bit, v. 2.95, 3.3.3, 4.1.0 and several other versions under Linux, FreeBSD 
and Windows. 

• Watcom, 32 bit, v. 1.2 

• Symantec, 32 bit, v. 7.5 

• Digital Mars, 32 bit, v. 8.3.8 

• Codeplay VectorC, 32bit, v. 2.1.7 

• Intel, 32 bit for Windows and Linux, v. 8.1 and 9.1 

• Microsoft, 64 bit, v. 14.00, 16.3 

• Gnu, 64 bit, v. 3.3.3, 4.1.0, 7.4.0, 9.2.0 for Linux and Windows 

• Clang, 64 bit, v. 5.0, 9.0 for Linux and Windows 

• Intel, 64 bit for Windows and Linux, v. 8.1 and 9.1 
 
This document provides information that is typically difficult to find. The documentation of 
calling conventions and binary interfaces of compilers and operating systems is often 
shamefully poor and sometimes completely absent.  
 
As most of the information given here is based on my own experiments, it is obviously not 
authoritative, and it is not guaranteed to be accurate or complete. This document tells how 
things are, not how they are supposed to be. Some details appear to be the haphazard 
consequences of how compilers happen to be implemented rather than results of careful 
planning. Calling "conventions" may not be the most appropriate term in this case, but it 
may be necessary to copy the quirks of existing compilers when full compatibility is desired. 
 
I have no knowledge about whether any information provided here is protected by patents 
or other legal restrictions, but I have found no specific patent markings on the compilers. 
 
I have gathered this information mainly by converting C++ code to assembly. All the 
compilers I have tested are capable of converting C++ to assembly, either directly or via 
object files. The reader is encouraged to do your own research, if necessary, to get 
additional information needed or to clarify any questions you may have. The easiest way of 
doing this research is to make the compiler convert a C++ test file to assembly. Other 
possible methods are to use object file dump utilities, disassembly utilities, or provoke error 
messages from a linker. If you find any errors in this document then please let me know. 
 
Please note that I don't have the time and resources to help people with their programming 
problems. If you Email me with such questions, you will not get any answer. You may send 
your questions to appropriate internet forums instead. 
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2 The need for standardization 
In the days of the old DOS operating system, it was often possible to combine development 
tools from different vendors with few compatibility problems. With 32-bit Windows, the 
situation has gone completely out of hand. Different compilers use different data 
representations, different function calling conventions, and different object file formats. 
While static link libraries have traditionally been considered compiler-specific, the 
widespread use of dynamic link libraries (DLL's) has made the distribution of function 
libraries in binary form more common. Unfortunately, the standardization of data 
representation and calling conventions that would make DLL's compatible is still lacking. 
 
In the Linux, BSD and Mac operating systems, there are fewer compatibility problems 
because a more or less official standard is defined. Most of this standard is followed by Gnu 
compilers version 3.x and later and by Clang compilers. Earlier versions of the Gnu compiler 
are not compatible with this. 
 
Fortunately, there is a growing recognition of the need for standardization of application 
binary interfaces (ABI's). The ABI's for the 64-bit operating systems are specified in much 
more detail than we have seen in older operating systems. However, some of these ABI's 
still lack specification of name mangling schemes and other details. Traditionally, compiler 
vendors have not published or standardized their name mangling schemes. A common 
excuse was that the object files would not be compatible anyway because of differences in 
data formats and calling conventions. Now that data formats and calling conventions are 
specified in the ABI's, there is no excuse any more for not publishing and standardizing 
name mangling schemes as well. It is my hope that this document will be a contribution 
towards this end. 
 
Compilers and other development tools is an area where de facto standards play an 
important role. Almost all compilers for UNIX-like x86 platforms are designed to be 
compatible with the Gnu compiler. And the calling "conventions" of the Microsoft compiler 
has almost become a de facto standard for the Windows operating system. The C++ 
compilers from Intel, Symantec, Digital Mars and Codeplay are all designed to be binary 
compatible with Microsoft's C++ compiler, despite the fact that Microsoft has refused to 
publish important details. At least some of these compiler makers have relied on reverse 
engineering for obtaining the necessary information. There is a pressing need for publishing 
the relevant standards, and the present document is my contribution towards this end. 
 
It is highly recommended that designers of development tools follow all available standards. 
Where no official standard exists, use an existing compiler for reference. Use the Microsoft 
compiler as a reference for Windows systems and the Gnu compiler as a reference for 
UNIX-like systems. For features that are not supported by these compilers, use the Intel 
compiler for reference. The calling conventions of these compilers may be considered de 
facto standards for Windows and UNIX platforms. 
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3 Data representation 

Table 1.  Data sizes 
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bool 2 1 1 1 1 1 1 1 1 1 1 1 1 

char 1 1 1 1 1 1 1 1 1 1 1 1 1 

wchar_t  2  2 2 2 2 2 2 2 2 4 4 

short int 2 2 2 2 2 2 2 2 2 2 2 2 2 

int 2 2 2 4 4 4 4 4 4 4 4 4 4 

long int 4 4 4 4 4 4 4 4 4 4 4 8 8 

int64_t    8 8   8 8 8 8 8 8 

enum (typical) 2 2 1 4 4 4 4 4 4 4 4 4 4 

float 4 4 4 4 4 4 4 4 4 4 4 4 4 

double 8 8 8 8 8 8 8 8 8 8 8 8 8 

long double 10 10 8 8 16 10 8 12 12 8 16 16 16 

__m64    8 8   8 8  8 8 8 

__m128    16 16   16 16 16 16 16 16 

__m256    32 32   32 32 32 32 32 32 

__m512    64 64   64 64 64 64 64 64 

pointer 2 2 2 4 4 4 4 4 4 8 8 8 8 

far pointer 4 4 4           

function pointer 2 2 2 4 4 4 4 4 4 8 8 8 8 

data member pointer 
(min) 

2 4 6 4 4 8 4 4 4 4 4 8 8 

data member pointer 
(max) 

 4 6 12 12 8 12 4 4 12 12 8 8 

member function 
pointer (min) 

2 12 6 4 4 12 4 8 8 8 8 16 16 

member function 
pointer (max) 

 12 6 16 16 12 16 8 8 24 24 16 16 

 
Table 1 shows how many bytes of storage various objects use for different compilers.   
 
Differences in data representation can cause problems when exchanging binary data files 
between programs, when exchanging data with a DLL compiled with a different compiler, 
and when porting C++ code that relies on a specific data format. 

Bool 

The type bool typically uses one byte of storage where all bits are significant. 0 indicates 

false and all other values indicate true. Most compilers will always store the value true as 

1. The ABI for 64 bit Linux/BSD specifies that other values than 0 and 1 are allowed only for 
function parameters and returns, not for memory objects. The opposite would be more 
logical since the most likely source of Booleans with other values than 0 and 1 is uninitia-
lized memory objects. 
 
A better convention would be to never allow other values than 0 and 1, or to rely only on a 
single bit. This would make it possible to implement Boolean expressions without the use of 
expensive branch instructions except where the evaluation of the second operand of && or 

|| has side effects. None of the compilers I have tested take advantage of the fact that the 
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only possible values are 0 and 1, even if the performance could be improved significantly by 
relying on this fact. 

Integers 

Signed integers are stored in 2-complement representation. The size is 8, 16, 32 or 64 bits, 
except in bitfields that can have other sizes. 

Floating point numbers 

Floating point numbers are stored according to the IEEE-754 standard. The most significant 
bit of the mantissa is explicit (=1) in long double and implicit in float and double. 

 
The x86 architecture specifies 10 bytes for long double. Microsoft compilers do not support 

this precision, but store long double as double, using 8 bytes. Other compilers use more 

than 10 bytes for the sake of alignment. The extra bytes are unused, even if subsequent 
objects would fit into this unused space. The 32-bit and 64-bit Intel compilers for Windows 
store long double as 8 bytes by default for compatibility with the Microsoft compiler. Use the 
option /Qlong-double to get 16 bytes long double in Intel compilers. 

Member pointers 

A class data member pointer basically contains the offset of the member relative to the 
beginning of the object. A member function pointer basically contains the address of the 
member function. 
 
Data member pointers and member function pointers may use extra storage in the general 
case in order to account for rare cases of multiple inheritance etc. The minimum value in 
table 1 applies to simple cases, the maximum value applies to the case where the compiler 
has no information about the class other than its name. Some compilers have options to 
cover this case in different ways. The extra information is stored in ways that are poorly 
documented and poorly standardized. The "Itanium C++ ABI" includes more detailed 
information about the representation of member pointers. This information may apply to 
other platforms as well. More information on the implementation of member pointers in 
different compilers can be found in "Member Function Pointers and the Fastest Possible 
C++ Delegates", by Don Clugston, www.codeproject.com/Articles/7150/Member-Function-
Pointers-and-the-Fastest-Possible 
 
Borland compilers add an offset of 1 to data member pointers in order to distinguish a 
pointer to the first data member from a NULL pointer, represented by 0. The other compilers 

have no offset, but represent a NULL data member pointer by the value -1. 

1 and 2-byte types in Gnu compiler 

Gnu compilers always zero-extend or sign-extend function return values to 32 bits if the 
values are less than 32 bits in order to conform to a certain interpretation of the C standard. 
The 64 bit Gnu compiler sign-extends signed values to 32 bits rather than to 64 bits. The 
extension to 32 bits appears to be completely superfluous since the calling function will 
repeat the zero-extension or sign-extension operation if needed rather than relying on the 
higher bits being valid. 

Arrays and strings 

Arrays are stored as consecutive objects in memory. No information about the size of the 
array is included in the binary representation. Multidimensional arrays are stored in row-
major order with the last index as least significant. Arrays are passed to functions as 
pointers without copying. C-style strings are stored as arrays with a terminating element of 
0. 
 
Most programming languages other than C and C++ store arrays and strings in ways that 
include a specification of the size. 

https://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
https://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
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Composite objects 

Objects of structures and classes are stored by placing the data members consecutively in 
memory. Unused bytes may be inserted between elements and after the last element, if 
needed, for the sake of alignment. The requirements for alignment are described below. 
 
Additional information for virtual tables and runtime type identification may be added, as 
described in chapter 11. 
 
 

4 Data alignment 

Table 2.  Alignment of static data 

  segment word size 16 bit 32 bit 64 bit 
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1 byte char 1 1 1 1 4 1 1 1 4 1 4 1 4 

2 byte int 2 2 2 4 4 2 2 2 4 4 4 2 4 

4 byte int 2 2 4 4 4 4 4 4 4 4 4 4 4 

8 byte int 2 2 8 8 8 4 8 8 8 8 8 8 8 

float 2 2 4 4 4 4 4 4 4 4 4 4 4 

double 2 2 8 8 8 4 8 8 8 8 8 8 8 

long double 2 2 8  16 4 8 4 4  16 16 16 

__m64    8 8   8 8 8 8 8 8 

__m128    16 16   16 16 16 16 16 16 

__m256    32 32   32 32 32 32 32 32 

__m512    64 64   64 64 64 64 64 64 

pointer 2 2 2 4 4 4 4 4 4 8 8 8 8 

far pointer 2 2 2           

big array 2 1-2 2-8 4-8 512 1-4 2-8 32 32 4-8 256 32 32 

big structure 2 1 2 4 32 1 8 32 32 4 32 32 32 

 
Table 2 shows the default alignment in bytes of static data. The alignment affects 
performance, but not compatibility. 
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Table 3.  Alignment of structure members 

  segment word size 16 bit 32 bit 64 bit 
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1 byte char 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 byte int 2 1 2 2 2 1 2 2 2 2 2 2 2 

4 byte int 2 1 2 4 4 1 4 4 4 4 4 4 4 

8 byte int 2 1 2 8 8 1 8 4,8 8 8 8 8 8 

float 2 1 2 4 4 1 4 4 4 4 4 4 4 

double 2 1 2 8 8 1 8 8 8 8 8 8 8 

long double 2 1 2  16 1 8 16 16  16 16 16 

__m64     8    8  8  8 

__m128     16    16  16  16 

__m256     32    32  32  32 

pointer 2 1 2 4 4 1 4 4 4 8 8 8 8 

far pointer 2 1 2           

 
Table 3 shows the alignment in bytes of data members of structures and classes. The 
compiler will insert unused bytes, as required, between members to obtain this alignment. 
The compiler will also insert unused bytes at the end of the structure so that the total size of 
the structure is a multiple of the alignment of the element that requires the highest 
alignment. Many compilers have options to change the default alignments. 
 
Differences in structure member alignment will cause incompatibility between different 
programs or modules accessing the same data and when data are stored in binary files. 
 
The programmer can avoid such compatibility problems by ordering the structure members 
so that no unused bytes need to be inserted. Likewise, the padding at the end of the 
structure may be specified explicitly by inserting dummy members of the required size. The 
size of the virtual table pointer, if any, must be taken into account (see chapter 11). 
 
 

5 Stack alignment 
The stack pointer must be aligned by the stack word size at all times. Some systems require 
a higher alignment. 
 
The Gnu compiler version 3.x and later for 32-bit Linux and Mac OS X makes the stack 
pointer aligned by 16 at every function call instruction. Consequently it can rely on ESP = 12 

modulo 16 at every function entry. This alignment is not consistently implemented. It is 
specified in the Mac OS ABI, but nowhere else. The stack is not aligned when compiling 
with option -Os or -mpreferred-stack-boundary=2, but apparently the Gnu compiler 

erroneously relies on the stack being aligned by 16 despite these options. The Intel compiler 
(v. 9.1.038) for 32 bit Linux does not have the same alignment. (I have submitted bug 
reports to Gnu and Intel about this in 2006. In 2009 Intel added a -falign-stack= 

assume-16-byte option to ICC version 11.0 to fix the problem). 

 
The stack is aligned by 4 in 32-bit Windows. 
 
The 64 bit systems keep the stack aligned by 16. The stack word size is 8 bytes, but the 
stack must be aligned by 16 before any call instruction. Consequently, the value of the stack 
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pointer is always 8 modulo 16 at the entry of a procedure. A procedure must subtract an 
odd multiple of 8 from the stack pointer before any call instruction. A procedure can rely on 
these rules when storing XMM data that require 16-byte alignment. This applies to all 64 bit 
systems (Windows, Linux, BSD). 
 
Where at least one function parameter of type __m256 is transferred on the stack, Unix 

systems (32 and 64 bit) align the parameter by 32 and the called function can rely on the 
stack being aligned by 32 before the call (i.e. the stack pointer is 32 minus the word size 
modulo 32 at the function entry). This does not apply if the parameter is transferred in a 
register. 
 
Various methods for aligning the stack are described in Intel's application note AP 589 
"Software Conventions for Streaming SIMD Extensions", "Data Alignment and Programming 
Issues for the Streaming SIMD Extensions with the Intel® C/C++ Compiler", and "IA-32 Intel 
® Architecture Optimization Reference Manual". 
 
 

6 Register usage 

Table 4.  Register usage 

 16 bit 
DOS, 
Windows 

32 bit 
Windows 

32 bit 
Linux, 
BSD, Mac 
OS 

64 bit 
Windows 

64 bit 
Linux, 
BSD, Mac 
OS 

scratch 
registers 

AX, BX, CX, 

DX, ES, 

ST(0)-ST(7) 

EAX, ECX, 

EDX, 

ST(0)-

ST(7), 

XMM0-XMM7, 
YMM0-YMM7, 

ZMM0-ZMM7, 

K0-K7 

EAX, ECX, 

EDX, 

ST(0)-

ST(7), 

XMM0-XMM7, 
YMM0-YMM7, 

ZMM0-ZMM7, 

K0-K7 

RAX, RCX, 

RDX, R8-R11, 

ST(0)-

ST(7), 
K0-K7, 

XMM0-XMM5, 

All YMM/ZMM 

registers 
except the 
lower 128 
bits of XMM6-
XMM15 

RAX, RCX, 

RDX, RSI, 

RDI,  

R8-R11, 

ST(0)-
ST(7) 
K0-K7, 

XMM0-
XMM15, 

YMM0-YMM15 

ZMM0-ZMM31 

callee-save 
registers 

SI, DI, BP, 
DS 

EBX, ESI, 

EDI, EBP 

EBX, ESI, 

EDI, EBP 

RBX, RSI, 

RDI, RBP, 

R12-R15, 

XMM6-XMM15, 

but nothing 
beyond the 
lower 128 
bits of vector 
registers 

RBX, RBP,  

R12-R15 

registers 
for 
parameter 
transfer 

see table 5 see table 5 see table 5 RCX, RDX,  

R8, R9, 

XMM0-XMM3, 

YMM0-YMM3, 

ZMM0-ZMM3 

RDI, RSI, 

RDX, RCX, 

R8, R9, 

XMM0-XMM7, 
YMM0-YMM7, 

ZMM0-ZMM7 

registers 
for return 

AX, DX, 
ST(0) 

EAX, EDX, 
ST(0), 

XMM0, YMM0, 
ZMM0 

EAX, 

ST(0), 

XMM0, YMM0, 
ZMM0 

RAX, ST(0), 

XMM0, YMM0, 
ZMM0 

RAX, RDX, 
ST(0), 

XMM0, YMM0, 
ZMM0 
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The rules for register usage depend on the operating system, as shown in table 4. Scratch 
registers are registers that can be used for temporary storage without restrictions (also 
called caller-save or volatile registers). Callee-save registers are registers that you have to 
save before using them and restore after using them (also called non-volatile registers). You 
can rely on these registers having the same value after a call as before the call. For 
example, a function using EBP may look like this 

 
FunctionUsingEBP PROC NEAR 

        push    ebp 

        mov     ebp, esp 

        sub     esp, 52 

        ... 

        mov     eax, [ebp+8] 

        push    eax 

        call    AnotherFunction 

        mov     esp, ebp 

        pop     ebp 

        ret 

FunctionUsingEBP ENDP 

 
Here, EBP is saved on the stack in the beginning of the function and restored in the end. The 

code relies on EBP being unchanged after the call to AnotherFunction.  EAX is also used, 

but doesn't have to be saved. 
 
It is more efficient to use registers for transferring parameters to a function and for receiving 
the return value than to store these values on the stack. Some calling conventions use 
certain registers for parameter transfer, but the rules for which registers to use are compiler-
specific in 16-bit and 32-bit systems. In 64-bit systems, the use of registers for parameter 
transfer is standardized. All systems use registers for return values if the returned object fits 
into the registers that are assigned for this purpose. See the next chapter for details. 

Segment registers 

You only have to care about segment registers in 16-bit mode. DS has to be saved and 

restored if you change it. ES can be changed freely. In DOS programs, ES can have any 

value. In 16-bit Windows, ES can only have values that are valid segment descriptors. It is 

not allowed to use ES for other purposes. 

 
In 32-bit and 64-bit mode, it is not allowed to change any segment register, not even 
temporarily. CS, DS, ES and SS all point to the flat segment group. FS is used for a thread 

environment block in Windows and for thread specific data in Linux. GS is used for a 

processor control region in 64-bit Windows. It is unused but reserved in 32-bit Windows. It is 
probably unused in 32-bit Linux. 

Arithmetic flags 

The rules for the arithmetic flags (zero flag, carry flag, etc.) are the same as for scratch 
registers. These flags need not be saved. Some programming languages (not C++) use the 
carry flag for Boolean returns. 

Direction flag 

The rules for the direction flag is the same in all systems. The direction flag is cleared by 
default. If the direction flag is set, then it must be cleared again before any call or return. 
Some compilers and subroutine libraries rely on the direction flag always being clear 
(Microsoft, Watcom, Digital Mars) while other systems use the double-safe strategy of 
always leaving the direction flag cleared, but not relying on receiving it cleared (Borland, 
Gnu). 
 
There is a slight possibility that some programmers may have ignored the rule for the 
direction flag. Therefore, it may be wise to use the double-safe strategy and clear the 
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direction flag before using it if the code will be linked together with modules from unreliable 
sources. 

Interrupt flag 

It is not allowed to turn off the interrupt flag in programs running in multi-user systems 
because this would make it possible to steal unlimited amounts of CPU time from other 
processes. It may be possible to turn off the interrupt flag in console mode programs 
running under Windows 98 and earlier operating systems without network. But since 
programs written for old operating systems are likely to be run under newer operating 
systems, it is reasonable to say that it is never possible to turn off the interrupt flag in 
application programs. 

Floating point registers 

The floating point registers ST(0)-ST(7) need not be saved. The register stack must be 

emptied before any call or return, except for registers used for return values. The 64-bit 
Microsoft compiler does not use ST(0)-ST(7). 

MMX registers 

The MM0-MM7 registers are aliased on the lower 64 bits of the floating point x87 registers 

ST(0)-ST(7). There is no callee save rule, so the MMX registers can be used freely in a 

function that doesn't use the floating point registers. The register set must be left in x87 
mode. Therefore, it is required to issue an EMMS instruction (or FEMMS) before calling any 

other (ABI compliant) function and before returning. Unfortunately, not all compilers do so. 
Therefore, the use of MMX registers and the __m64 type should be avoided if possible. The 

64-bit Microsoft compiler does not use MM0-MM7. 

Floating point control word and MXCSR register 

The floating point control word and bit 6-15 of the MXCSR register must be saved and 

restored before any call or return by any procedure that needs to modify them, except for 
procedures that have the purpose of changing these. 

Deviating from the conventions 

It is possible to deviate from the register usage conventions in an isolated section of code 
as long as all interfaces to other parts of the code conform to the conventions. Some 
compilers do this in a process known as whole program optimization. Any deviation from the 
conventions must be well documented. Deviations from good programming practice are 
justified only if a significant gain in speed can be obtained. 

ABI for 64 bit Windows has been changed 

Early versions of the 64 bit Windows ABI specified that only the lower 64 bits of XMM6-XMM15 

have callee-save status while later versions specify that all 128 bits must be saved. An 
MSDN document dated June 14, 2004 specifies the now-obsolete rule while a later version 
dated February 18, 2005 specifies the new rule without comments on the change. The 
change is mentioned in Intel compiler manuals. The 2005 standard is supported by Intel 
C++ compiler version 8.1.015 and later. My tests show that Microsoft compiler version 
14.00.2228.2 uses the obsolete convention, while version 14.00.40310.41 uses the new 
convention. I have no information about Microsoft compiler versions between these two 
numbers. 

Microsoft 16-bit compiler 

The 16-bit Microsoft compiler returns float and double through a static memory location 

pointed to by AX.  long double is returned in ST(0). 
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Watcom compiler 

The Watcom compiler doesn't conform to the register usage conventions in table 4. The 
only scratch register is EAX. All other general purpose registers are callee-save, except for 

EBX, ECX, EDX when used for parameter transfer, and ESI when used for return pointer. (In 

16-bit mode, ES is also a scratch register). It is possible to specify any other register usage 

by the use of pragmas in the Watcom compiler. 

How many registers should be callee-save? 

I have never seen a study of the optimal ratio of caller-save to callee-save registers. Scratch 
registers are preferred for temporary values that do not have to be saved across a function 
call. Functions that do not call any other functions (leaf functions) and functions that have a 
low probability of calling other functions (effective leaf functions) will prefer to use scratch 
registers. If a function has more than one call to other functions or calls another function 
inside a loop, and if it needs to store values of local variables across these function calls, 
then the function becomes simpler by using callee-save registers. If the called functions 
need to use the same registers, then there is no advantage in speed, but possibly in size. If 
the called functions can use other registers, then there is an advantage in speed as well. 
Since leaf functions are the most likely ones to be speed-critical, it is reasonable to have as 
many scratch registers as are typically needed in a leaf function. Functions that call other 
functions, on the other hand, are likely to have more variables and thus need more 
registers. Balancing these considerations, I would expect the optimal fraction of scratch 
registers to be between a half and two thirds for architectures that have few registers, and 
somewhat lower if there are plenty of registers. 
 
Some compilers have capabilities for whole-program-optimization, and we can expect such 
features to become more common in the future. If the compiler has information about the 
register needs of both caller and callee at the same time, then it can allocate different 
registers to the two functions so that no registers need to be saved. In this case, the optimal 
solution is to define callee-save registers only for system functions, device drivers and 
library functions. 
 
The size of vector registers will be increased to 512 bits in the future AVX-512 instruction 
set, and probably increased later to 1024 or 2048 bits. These extensions will use automatic 
zero-extension of the 256-bit YMM registers. It is therefore not useful to have callee-save 
status for registers that can be expected to be bigger in future instruction sets if compatibility 
with existing code is needed. 
 

6.1 Can x87 floating point registers be used in 64-bit Windows? 

There was originally some confusion about whether 64-bit Windows allows the use of the 
floating point registers ST(0)-ST(7) and the MM0 - MM7 registers that are aliased upon 

these. One early technical document found at Microsoft's website says "x87/MMX registers 
are unavailable to Native Windows64 applications" (Rich Brunner: Technical Details Of 
Microsoft® Windows® For The AMD64 Platform, Dec. 2003). An AMD document says: "64-
bit Microsoft Windows does not strongly support MMX and 3Dnow! instruction sets in the 
64-bit native mode" (Porting and Optimizing Multimedia Codecs for AMD64 architecture on 
Microsoft®  Windows®, July 21, 2004). A document in Microsoft's MSDN says: "A caller 
must also handle the following issues when calling a callee: [...] Legacy Floating-Point 
Support: The MMX and floating-point stack registers (MM0-MM7/ST0-ST7) are volatile. That 
is, these legacy floating-point stack registers do not have their state preserved across 
context switches" (MSDN: Kernel-Mode Driver Architecture: Windows DDK: Other Calling 
Convention Process Issues. Preliminary, June 14, 2004; February 18, 2005). This 
description is nonsense because it confuses saving registers across function calls and 
saving registers across context switches. Some versions of the Microsoft assembler ml64 
(e.g. v. 8.00.40310) gives the following message when attempts are made to use floating 
point registers in 64 bit mode: "error A2222: x87 and MMX instructions disallowed; legacy 
FP state not saved in Win64". 
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However, a public discussion forum quotes the following answers from Microsoft engineers 
regarding this issue: "From: Program Manager in Visual C++ Group, Sent: Thursday, May 
26, 2005 10:38 AM. It does preserve the state. It's the DDK page that has stale information, 
which I've requested it to be changed. Let them know that the OS does preserve state of 
x87 and MMX registers on context switches." and "From: Software Engineer in Windows 
Kernel Group, Sent: Thursday, May 26, 2005 11:06 AM. For user threads the state of legacy 
floating point is preserved at context switch. But it is not true for kernel threads. Kernel 
mode drivers can not use legacy floating point instructions." 
(www.planetamd64.com/index.php?showtopic=3458&st=100). 
 
The issue has finally been resolved with the long overdue publication of a more detailed ABI 
for x64 Windows in the form of a document entitled "x64 Software Conventions", well hidden 
in the bin directory (not the help directory) of some compiler packages. This document says: 
"The MMX and floating-point stack registers (MM0-MM7/ST0-ST7) are preserved across 
context switches.  There is no explicit calling convention for these registers.  The use of 
these registers is strictly prohibited in kernel mode code." The same text has later appeared 
at the Microsoft website (msdn2.microsoft.com/en-us/library/a32tsf7t(VS.80).aspx). 
 
My tests indicate that these registers are saved correctly during task switches and thread 
switches in 64-bit mode, even in an early beta version of x64 Windows. 
 
The Microsoft C++ compiler version 14.0 never uses these registers in 64-bit mode, and 
doesn't support long double precision. The Intel C++ compiler for x64 Windows supports 
long double precision and __m64 in version 9.0 and later, while earlier versions do not.  

 
The conclusion is that it is safe to use floating point registers and MMX registers in 64-bit 
Windows, except in kernel mode drivers. 
 

6.2 YMM vector registers 

The 128-bit XMM registers are extended to 256-bit YMM registers in the AVX instruction 
set. The use of YMM registers is supported in Windows 7, Windows Server 2008 R2 and 
Linux kernel version 2.6.30 and later. 
 
A preliminary ABI published by Intel (see literature p. 59) is supported by operating systems 
and compilers. The YMM registers do not have callee-save status, except for the lower half 
of YMM6-YMM15 in 64-bit Windows, where XMM6-XMM15 have callee-save status. None 
of the vector registers have callee save status in Linux. 
 
The corresponding vector types are named __m256, __m256d, __m256i. These should 

preferably be aligned by 32, but some systems allow alignment by 16. The System V ABI for 
64-bit Unix systems requires alignment by 32. The System V ABI for 32-bit Unix does not 
mention __m256, but tests show that it is aligned by 32. Apparently, Windows allows 
alignment by 16. In both Windows and Linux, these registers are aligned by 32 when 
transferred on the stack as function parameters. 
 

6.3 Transitions between VEX and non-VEX code 

All instructions with 128-bit vector registers have two versions: a legacy version that leaves 
the bits beyond 128 unchanged, and a version with VEX prefix that sets the remaining bits 
to zero if the vector register has more than 128 bits. The first Intel processors with 256-bit 
vectors had different states where the 256-bit registers were split into two halves when 
executing legacy 128-bit instructions, and merged into full 256-bit registers when executing 
256-bit instructions. These state transitions were quite costly (70 clock cycles). A 
recommended way to avoid the cost of these state transitions was to issue the instruction 
VZEROUPPER to clear the upper half of all vector registers or VZEROALL to clear the whole 

http://msdn2.microsoft.com/en-us/library/a32tsf7t(VS.80).aspx
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registers. Good performance requires that a VZEROUPPER instruction is used when leaving 

any code that uses 256-bit or 512-bit vectors if there is any risk that the subsequent code 
will use non-VEX 128-bit instructions.  
 
The recommendation from Intel is that any function that uses YMM or ZMM registers should 
issue the instruction VZEROUPPER or VZEROALL before calling any ABI compliant function and 

before returning to any ABI compliant function. VZEROUPPER is used if the ABI specifies that 

some of the XMM registers must be preserved (64-bit Windows) or if an XMM register is 
used for parameter transfer or return value. VZEROALL can optionally be used instead of 

VZEROUPPER in other cases. Neither VZEROUPPER nor VZEROALL is needed before calling a 

function that uses YMM or ZMM registers for parameter transfer or before returning from a 
function that uses the YMM0 or ZMM0 register for return value. Failure to use VZEROUPPER or 

VZEROALL will result in poor performance but no error. See manual 2: "Optimizing 

subroutines in assembly language" for an explanation, and the discussion in Intel's Forum: 
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/301853 
 
The high cost of transition between VEX and non-VEX states is found in Intel Sandy Bridge, 
Ivy Bridge, Haswell, and Broadwell processors. The Skylake processor also has different 
states, but the state transitions are fast. Any instruction that touches an YMM or ZMM 
register will set the Skylake processor in a state where the vector registers are regarded as 
having a dirty upper half. Any non-VEX instruction that writes to an XMM register on the 
Skylake will have a false dependence on the previous value of this register. This can cause 
a performance loss if there is no VZEROUPPER after VEX code on the Skylake and probably 

on later Intel processors as well. 
 
Unfortunately, the first Intel processor with 512-bit registers, called Knights Landing, has 
very inefficient VZEROUPPER and VZEROALL instructions. The Knights Landing processor has 

no false dependence when mixing VEX and non-VEX code. The recommendation for the 
Knights Landing is not to use VZEROUPPER or VZEROALL. (Intel 64 and IA-32 Architectures 

Optimization Reference Manual, 2016). This requires a separate code version for Knights 
Landing. 
 
The Skylake, and supposedly also future Intel processors with AVX512, are treating the new 
registers zmm16-zmm31 separately so that you can avoid the need for VZEROUPPER by 

using only zmm16-zmm31, and not zmm0-zmm15. See the discussion on 
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/704023. 
 
Current AMD processors have no such problems, and VZEROUPPER is not needed on any 

currently known AMD processors, but it is likely that it will be needed on future AMD 
processors. 
 

6.4 ZMM vector registers 

The size of vector registers is 512 bits in the AVX512F instruction set, and it is possible that 
it will be increased to 1024 bits or more in some future processors.  
 
The AVX512 instruction set increases the number of vector registers in 64-bit mode to 32 
registers named ZMM0 - ZMM31. In 32-bit mode, there are only 8 ZMM registers. The 512-
bit ZMM registers are stored to memory locations aligned by 64, according to the ABI’s, 
although unaligned access is possible. 
 
In addition, there are eight new mask registers named k0 - k7. These registers are specified 
as 64 bits. Only 16 bits are used in AVX512F, while all 64 bits are used in AVX512BW. 
 
None of the mask registers have callee save status in Linux or Windows. The AVX512F 
instruction set has no instruction for storing all 64 bits of a mask register. Therefore, it is 

https://software.intel.com/en-us/forums/intel-isa-extensions/topic/301853
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/704023
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impossible to use these registers in an interrupt handler under AVX512F in a way that is 
compatible with AVX512BW, unless the entire register state is saved. 
 
The mask registers are treated as integers in function calls. Integer registers are used when 
mask registers are specified as function parameters or return. 
 
The Intel memory protection instructions, MPX, adds another four new registers, BND0-
BND3 of 2x64 bits each. 
 

6.5 Register usage in kernel code 

Register use is more restricted in device drivers and kernel code than in application code. 
The operating system may save time by not saving all registers during interrupts and task 
switches. 
 
The FXSAVE and FXRSTOR instructions can save the x87, MMX and XMM registers during a 

task switch, but not the YMM or ZMM registers. Instead, it is necessary to use the XSAVE 

and XRESTOR instructions for saving the YMM/ZMM registers and future larger registers 

during a task switch. It is not sufficient to store each vector register individually because this 
would be incompatible with future extensions of the register size. Any instruction that writes 
to a YMM/ZMM register will clear all bits beyond 256/512 in future register extensions larger 
than 256/512 bits. Using XSAVE and XRESTOR is the only way of saving the vector registers 

that is compatible with future extensions. The operating system must use CPUID to 
determine the necessary size of the save buffer. 

Interrupt service routines under Windows and Linux 

Interrupt service routines should be fast. It would take too much time to save and restore all 
registers in an interrupt service routine. The use of x87 and vector registers is prohibited in 
interrupt service routines in most operating systems, including Linux and 32-bit Windows. It 
may be possible to use the XMM registers, but not the YMM registers, in interrupt service 
routines in 64-bit Windows, but it is not recommended to use XMM registers here because 
of the extra cost of changing the YMM register state. 

Device drivers under Windows 

The x87 floating point registers can be used in device drivers in 32-bit Windows if saved and 
restored with KeSaveFloatingPointState and KeRestoreFloatingPointState. It is strictly 

prohibited to use x87 registers and MMX registers in 64-bit Windows device drivers. 
 
XMM registers can be used in Windows device drivers. In 32-bit Windows it is necessary to 
save these registers using KeSaveFloatingPointState and KeRestoreFloatingPointState or 

KeSaveExtendedProcessorState and KeRestoreExtendedProcessorState. In 64-bit Windows 

device drivers it is sufficient to obey the general register usage rules when using XMM 
registers. 
 
YMM registers can be used in 32-bit and 64-bit Windows device drivers if saved and 
restored with KeSaveExtendedProcessorState and KeRestoreExtendedProcessorState. These 

functions will allocate a buffer of sufficient size in case of future register extensions. 

Device drivers under Linux 

Linux systems use lazy saving of floating point registers and vector registers. This means 
that these registers are not saved and restored on every task switch. Instead they are 
saved/restored on the first access after a task switch. This method saves time in case no 
more than one thread uses these registers. The lazy saving scheme is not supported in 
kernel mode. Any device driver that attempts to use these registers improperly will cause an 
exception that will probably make the system crash. A device driver that needs to use vector 
registers must  first save these registers by calling the function kernel_fpu_begin() and 
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restore the registers by calling kernel_fpu_end() before returning or sleeping. These 

functions also prevent pre-emptive interruption of the device driver which could otherwise 
mess up the registers. kernel_fpu_begin() saves all floating point registers and vector 

registers if available. 
 
There is no red zone in 64-bit Linux kernel mode. 
 
The programmer should be aware of these restrictions if calling any other library than the 
system kernel libraries from a device driver. 
 
 

7 Function calling conventions 

Table 5.  Function calling conventions 

segment 
word 
size 

calling conven-
tion, operating 
system, compiler 

parameters 
in registers 

parameter 
order on 
stack 

stack 
cleanup 
by 

comments 

16 bit cdecl  C caller  
pascal  Pascal function  

fastcall Microsoft 

(non-member) 

ax, dx, bx Pascal function return pointer in bx 

fastcall Microsoft 

(member function) 

ax, dx Pascal function this on stack low 

address. 
return pointer in ax 

fastcall Borland ax, dx, bx Pascal function this on stack low 

address. 
return ptr on stack high 
addr. 

Watcom ax, dx, bx, cx C function return pointer in si 

32 bit cdecl  C caller  
stdcall  C function  
pascal  Pascal function  

Gnu  C hybrid Stack possibly aligned by 
16. See p. 9 

fastcall Microsoft ecx, edx C function return pointer on stack if 
not member function 

fastcall Gnu ecx, edx C function  

fastcall Borland eax, edx, ecx Pascal function  

thiscall Microsoft ecx C function default for member 
functions 

Watcom eax, edx, 

ebx, ecx 

C function return pointer in esi 

64 bit Windows 
(Microsoft, Intel) 

rcx/zmm0, 

rdx/zmm1, 

r8/zmm2, 

r9/zmm3 

C caller Stack aligned by 16. 
32 bytes shadow space 
on stack. The specified 
registers can only be 
used for parameter 
number 1, 2, 3 and 4, 
respectively. 

Linux, BSD, Mac 
(Gnu, Intel) 

rdi, rsi, 

rdx, rcx, r8, 

r9, zmm0-7 

C caller Stack aligned by 16. 
Red zone below stack. 
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The way of transferring parameters to a function is not always as well standardized as we 
would wish, as table 5 shows. In many cases it is possible to specify a particular calling 
convention in a C++ declaration, for example: 
int __stdcall SomeFunction (float a); 

In 16 bit and 32 bit mode, we have the same calling conventions in different operating 
systems, but some differences between different brands of compilers, especially for the 
__fastcall convention and for member functions. In 64 bit mode, the different operating 

systems use different calling conventions, but I would not expect differences between 
different compilers because all details are defined in the official ABI's. 
 
The entries in table 5 need some explanations. Segment word size defines the hardware 
platform. 16 bit refers to DOS and Windows 3.x and earlier. 32 bit refers to Windows 95 and 
later, Linux and BSD for the 32-bit x86 processors. 64 bit refers to Windows, Linux and BSD 
for the x64 processor architecture. 
 
Calling convention is the name of the calling convention. __cdecl, __stdcall, __pascal and 

__fastcall can be specified explicitly in C++ function declarations for compilers that support 

these conventions. __cdecl is the default for applications and static libraries. __stdcall is 

the default for system calls (including Windows API calls) and recommended for library 
DLL's in 32-bit Windows. __thiscall is used by default in Microsoft compilers for member 

functions in 16 and 32 bit mode. Microsoft, Borland, Watcom and Gnu are brands of 
compilers. Intel compilers for Windows are compatible with Microsoft. Intel compilers for 
Linux are compatible with Gnu. Symantec, Digital Mars and Codeplay compilers are 
compatible with Microsoft. In 64 bit mode, there is one default calling convention for each 
operating system, while other calling conventions are rare in 64 bit mode. 
 
Parameters in registers specifies which registers are used for transferring parameters. ecx, 

edx means that the first parameter goes into ecx, the second parameter goes into edx, and 

subsequent parameters are stored on the stack. Parameter types that do not fit into the 
registers are stored on the stack. In general, all integer types, bool, enum and pointers can 

be transferred in the general purpose registers. References are treated as identical to 
pointers in all respects. Arrays are transferred as pointers. Float and double types are 
transferred in XMM registers in 64 bit mode, otherwise on the stack. Long doubles, 
structures, classes and unions may be transferred on the stack or through pointers if they 
do not fit into registers. The rules for deciding whether an object is transferred in registers, 
on the stack, or through a pointer are explained below. Where no register is specified in 
table 5, all parameters go on the stack. Return parameters are returned in registers as 
specified in chapter 6. Composite objects are returned as specified below. 
 
Parameter order on stack. The Pascal order means that the first parameter has the highest 
address on the stack and the last parameter has the lowest address, immediately above the 
return address. If parameters are put on the stack by push instructions then the first 
parameter is pushed first because the stack grows downwards. The C order is opposite: 
The first parameter has the lowest address, immediately above the return address, and the 
last parameter has the highest address. This method was introduced with the C language in 
order to make it possible to call a function with a variable number of parameters, such as 
printf.  

 
Each parameter must take a whole number of stack entries. If a parameter is smaller than 
the stack word size then the rest of that stack entry is unused. Likewise, if a parameter is 
transferred in a register that is too big, then the rest of that register is unused. 
 
If the type of a parameter is not specified explicitly because the function has no prototype or 
because it has varargs (...), then parameters of type float are converted to double, char 

and short int are converted to int. 

 
Stack cleanup by. Specifies whether the stack space used by parameters is freed by the 
caller or by the called function. If n bytes of stack space is used for parameters and the 
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called function has the responsibility for stack cleanup, then this function must return with a 
ret n instruction, otherwise ret 0. The 32-bit Gnu compiler uses a hybrid of these two 

methods: An object return pointer (see below) must be removed from the stack by the called 
function, all other parameters are removed by the caller. 
 
If stack cleanup is the responsibility of the caller, and if speed is important, then it may be 
advantageous for the caller to leave the stack pointer where it is after the call and put 
parameters for a subsequent function call on the stack by mov instructions rather than by 

push instructions. 

Further rules 

Member functions (Applies to all C++ compilers and operating systems). All member 
functions receive a pointer to the object as an implicit parameter, known as this in C++. 

This pointer comes before the explicit parameters, usually as the first parameter. 
Constructors must return this in the return register. 

 
Returning objects (Applies to all compilers and operating systems). Objects that do not fit 
into the return registers are returned to a storage space supplied by the caller. The caller 
must supply a return pointer as an implicit parameter to the called function if this is 
necessary. The same pointer is returned in the return register. The rules for deciding 
whether an object is returned in registers or through a return pointer are explained below for 
each platform. 
 
A member function that returns an object can have two implicit parameters, a return pointer 
and a this pointer. In Microsoft compilers and 64 bit Windows, the this pointer is the first 

parameter, the return pointer is the second parameter, and all explicit parameters come 
thereafter. In Borland and Gnu compilers and in 64 bit Linux and BSD, the return pointer is 
the first parameter, the this pointer is the second parameter, and all explicit parameters 

come thereafter (this order is compatible with C). 
 
Prolog and epilog. Some systems have specific rules for how the function prolog and epilog 
should be constructed in order to support stack unwinding. See chapter 9. 
 
64 bit Windows has more rules. The first parameter goes into rcx or xmm0; the second 

parameter goes into rdx or xmm1, etc. This means that if the first parameter is a float in xmm0 

and the second parameter is an integer, then the latter goes into rdx, while rcx is unused. 

The maximum number of parameters that can be transferred in registers is four in total, not 
four integers plus four floats. 
 
The caller must reserve 32 bytes of stack space as "shadow space" for register parameters, 
even if there are no parameters. The 32 bytes of shadow space come immediately after the 
return address. Any parameters on the stack come after the 32 empty bytes. The intended 
purpose of the shadow space is as a "home address" for the register parameters which the 
called function can use for storing the register parameters in case the registers are used for 
something else. The caller does not need to put anything into the shadow space. Since the 
shadow space is owned by the called function, it is safe to use these 32 bytes of shadow 
space for any purpose by the called function. Even a function without parameters can rely 
on having 32 bytes of storage space after the return address. 
 
The shadow space is often used by compilers for storing the register parameters. I haven't 
seen a compiler using the shadow space for anything else, although it would be perfectly 
legal to do so.  
 
If the type of a parameter is not specified explicitly because the function has no prototype or 
because it has varargs (...), and a parameter of type double is passed in an XMM register 

(float is converted to double), then the corresponding integer register must contain the 

same value (not converted to int). This does not apply to parameters passed on the stack. 
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64 bit Linux, BSD and Mac. This system has six integer registers and eight XMM registers 
for parameter transfer. This means that a maximum of 14 parameters can be transferred in 
registers in 64 bit Linux, BSD and Mac, while 64 bit Windows allows only 4. There is no 
shadow space on the stack. Instead there is a "red zone" below the stack pointer that can 
be used for temporary storage. The red zone is the space from [rsp-128] to [rsp-8]. A 

function can rely on this space being untouched by interrupt and exception handlers (except 
in kernel code). It is therefore safe to use this space for temporary storage as long as you 
don't do any push or call instructions. Everything stored in the red zone is destroyed by 

function calls. The red zone is not available in Windows. 
 
If the type of a parameter is not specified explicitly because the function has no prototype or 
because it has varargs (...), then rax must indicate the number of XMM registers used for 

parameter transfer. Valid values are 0 - 8. A value of rax that is higher than the actual 

number of XMM registers used is allowed as long as it doesn't exceed 8. 
 
sysenter calls use r10 instead of rcx for parameter transfer and rax for function number. 

Hot patching support 

Hot patching is a mechanism in Windows that allows any function to be replaced by a 
security patch without restarting the process that uses the function. If support for hot 
patching is desired then there must be at least 6 unused bytes before the function entry, 
and the first instruction in the function must be at least two bytes long. In 32-bit Windows, 
the compiler may insert a 2-bytes NOP (MOV EDI,EDI) in the beginning of the function. In 

64-bit Windows the compiler inserts a REX.W prefix before the first instruction if it is a push 
instruction to make it two bytes long. 
 

7.1 Passing and returning objects 

Table 6.  Methods for passing structure, class and union objects 

segment word size 16 bit 32 bit 64 bit 

compiler M
ic

ro
s
o
ft 

B
o

rla
n

d
  

W
a

tc
o
m
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d
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o
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d
  

G
n
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  v
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W
in

d
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s
 

L
in

u
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, B

S
D

, M
a

c
 

calling convention a
ll 

a
ll 

 a
ll 

d
e
fa

u
lt 

fa
s
tc

a
ll 

d
e
fa

u
lt 

fa
s
tc

a
ll 

d
e
fa

u
lt 

  

max number of integer registers 
used for transfer of an object 

0 0 2 0 0 1 0 1 1 1 2 

max number of XMM registers 
used for transfer of an object 

0 0 0 0 0 0 0 0 0 0 2 

simple structure, class or union S S I S S I S I I IZ R 

size not a power of 2 S S S S S S S S S PI R 

contains mixed int and f.p. S S S S S S S S S IZ R 

contains long double S S S S S S S S S IZ S 

has member function S S I S S I S I I IZ R 
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has constructor S S I S S S S I I IZ R 

has copy constructor S S PI S S S PS PI PI PI PI 

has destructor S S PI S S I PS PI PI IZ PI 

has virtual S S PI S S S PS PI PI PI PI 

has inheritance S S I S S I S I I IZ R 

has no data S S I S S I S I I IZ S 

Symbols: 
S: Copy of entire object transferred on the stack. 
PI: Temporary copy referenced by pointer in register. If no vacant register, use PS. 
PS: Temporary copy referenced by pointer on stack. 
I: Entire object transferred in integer registers. Use S if too big or not enough vacant 
  registers. 
IZ: Entire object transferred in integer register, zero-extended to register size. Use PI if 

too big. Use PS if no vacant register. 
R: Entire object is transferred in integer registers and/or XMM registers if the size is no 

bigger than 128 bits, otherwise on the stack. Each 64-bit part of the object is 
transferred in an XMM register if it contains only float or double, or in an integer 
register if it contains integer types or mixed integer and float. Two consecutive floats 
can be packed into the lower half of one XMM register. Consecutive doubles are not 
packed. No more than 64 bits of each XMM register is used. Use S if not enough 
vacant registers for the entire object. Examples: int and float: RDI, int and double: 

EDI and XMM0, four floats: XMM0 and XMM1. 

 
There are several different methods to transfer a parameter to a function if the parameter is 
a structure, class or union object. A copy of the object is always made, and this copy is 
transferred to the called function either in registers, on the stack, or by a pointer, as 
specified in table 6. The symbols in the table specify which method to use. S takes 
precedence over I and R. PI and PS take precedence over all other passing methods.  
 
As table 6 tells, an object cannot be transferred in registers if it is too big or too complex. 
For example, an object that has a copy constructor cannot be transferred in registers 
because the copy constructor needs an address of the object. The copy constructor is 
called by the caller, not the callee. 
 
Objects passed on the stack are aligned by the stack word size, even if higher alignment 
would be desired. Objects passed by pointers are not aligned by any of the compilers 
studied, even if alignment is explicitly requested. The 64bit Windows ABI requires that 
objects passed by pointers be aligned by 16. 
 
An array is not treated as an object but as a pointer, and no copy of the array is made, 
except if the array is wrapped into a structure, class or union. 
 
The 64 bit compilers for Linux differ from the ABI (version 0.97) in the following respects: 
Objects with inheritance, member functions, or constructors can be passed in registers. 
Objects with copy constructor, destructor or virtual are passed by pointers rather than on the 
stack. 
 
The Intel compilers for Windows are compatible with Microsoft. Intel compilers for Linux are 
compatible with Gnu. 
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Table 7.  Methods for returning structure, class and union objects  
(except intrinsic vectors __m64, __m128, __m256, __m512) 

segment word size 16 bit 32 bit 64 bit 

compiler M
ic

ro
s
o
ft 

B
o

rla
n

d
 

W
a

tc
o
m

 

M
ic

ro
s
o
ft 

B
o

rla
n

d
 

W
a

tc
o
m

 

G
n

u
 e

x
c
e

p
t 

M
a

c
 O

S
 

M
a

c
 O

S
 

W
in

d
o
w

s
 

L
in

u
x
, B

S
D

, 

M
a

c
 

max number of integer registers 
used for return 

0 2 2 2 1 1 2 2 1 2 

max number of ZMM registers 
used for return 

0 0 0 0 0 0 0 0 0 2 

max number of f.p. registers 
used for return 

0 0 0 0 0 0 0(1) 0 0 1 

simple structure, class or union P I I I I I I I I R 

bigger than max registers P PF PSI PS P PSI P P P P 

size not a power of 2 P PF PSI PS P PSI P I P R,X 

contains only f.p. P I I I I I P(F
1) 

I? I X 

contains mixed int and f.p. P PF PSI I P PSI I I I R 

contains mixed float and double P PF PSI PS P PSI P P P X 

contains only one long double P PF PSI I P PSI P(F
1) 

P I F 

contains only one SIMD type    P   P P P Y 

contains mixed long double and 
other 

P PF PSI PS P PSI P P P P 

has member function P I I I I I P(I) I I R 

has inheritance P I I P I I P(I) I P R 

has constructor P PF I P P I P(I) I P R 

has copy constructor P PF PA
X 

P P PA
X 

P P P P 

has destructor P PF PA
X 

P P PA
X 

P P P P 

has virtual P PF PA
X 

P P PA
X 

P P P P 

has no data P I I 0 I I P(0) P 0 I 

Symbols: 
I Returned in integer registers 
X Returned in XMM registers 

Y Returned in XMM0 or YMM0 or ZMM0 

F Returned in ST(0) register 

F1 If one float, double or long double, use ST(0), otherwise I. 

R The entire object is returned in integer registers RAX and RDX, and/or XMM registers 

XMM0 and XMM1, if the size is no bigger than 128 bits, otherwise on the stack. Each 

64-bit part of the object is transferred in an XMM register if it contains only float or 

double, or in an integer register if it contains integer types or mixed integer and float. 

Two consecutive float's can be packed into the lower half of one XMM register. 

Consecutive double's are not packed. No more than 64 bits of each XMM register is 

used. Use P if not enough vacant registers. Examples: int and float: RAX, int and 

double: EAX and XMM0, four floats: XMM0 and XMM1. 

P Pointer to temporary memory space passed to function. Pointer may be passed in 
register if fastcall or 64-bit mode, otherwise on stack. Same pointer is returned in 

AX, EAX or RAX. 
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PS Pointer to temporary memory space passed to function. Pointer is passed on stack, 
even if fastcall. Same pointer is returned in EAX. 

PF Far pointer to temporary memory space passed on stack and returned in DX:AX. 

PAX Pointer to temporary memory space passed to function in AX/EAX and returned 

unchanged in AX/EAX. 

PSI Pointer to temporary memory space passed to function in SI/ESI and returned 

unchanged in AX/EAX. 

0 Nothing passed or returned. 
 
A struct, class or union object can be returned from a function in registers only if it is 

sufficiently small and not too complex. If the object is too complex or doesn't fit into the 
appropriate registers then the caller must supply storage space for the object and pass a 
pointer to this space as a parameter to the function. The pointer can be passed in a register 
or on the stack. The same pointer is returned by the function. The detailed rules are given in 
table 7. 
 
P and PF take precedence over all other. PS takes precedence over all but P. PAX takes 
precedence over PSI, which takes precedence over I. 
 
The storage space pointed to by return pointers is aligned by 16 in the 64 bit Gnu compiler 
and the 64 bit MS compiler. The 32 bit Microsoft compiler can align this space if explicitly 
requested. 
 
The Gnu compiler version 2.x and some implementations of version 3.x differ, as indicated 
by the parentheses. 
 
The Intel compilers for Windows are compatible with Microsoft. Intel compilers for Linux are 
compatible with Gnu. 
 
The 64 bit Gnu compiler differs from the ABI (version 0.97) by using only one floating point 
register for return. 
 

7.2 Passing and returning SIMD types 

Table 8.  Methods for passing and returning SIMD data types 

segment word size 32 bit 64 bit 

operating system Windows Linux Windows Linux 

__m64 parameters transferred in 

registers 

3 mmx 

registers 

3 mmx 

registers 

4 g. p. 
registers 

8 xmm 

registers 
(0 in gcc v. 

≤ 3.3) 

alignment of __m64 parameters 

on stack 

4 8 8 8 

__m64 returned in register mm0 mm0 rax xmm0 

(mm0 in gcc 

v. ≤ 3.3) 

__m128 parameters transferred 

in registers 

3 xmm 

registers 

3 xmm 

registers 

transferred 
by pointer 

8 xmm 

registers 

alignment of __m128 parameters 

on stack 

16 16 16 16 

__m128 returned in register xmm0 xmm0 xmm0 xmm0 

__m256 parameters transferred 

in registers 

3 ymm 

registers 

3 ymm 

registers 

transferred 
by pointer 

8 ymm 

registers 

alignment of __m256 parameters 

on stack 

16 or 32 32 32 32 
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__m256 returned in register ymm0 ymm0 ymm01 ymm0 

__m512 parameters transferred 

in registers 

3 zmm 

registers 

3 zmm 

registers 

transferred 
by pointer 

8 zmm 

registers 

alignment of __m512 parameters 

on stack 

64 64 64 64 

__m512 returned in register zmm0 zmm0 zmm01 zmm0 

 
The types __m64, __m128, __m256 and __m512 define the SIMD data types that fit into the 64-

bit mmx registers, the 128-bit xmm registers, the 256-bit ymm registers or the 512-bit zmm 
registers, respectively. Most compilers supports these types as intrinsic types. There are 
special rules for passing and returning function parameters of the these types as shown in 
table 8. Some compilers have options for either treating these types as intrinsic types, using 
the passing methods defined in table 8, or treating them as structures according to the rules 
in table 6 and table 7. The types __m128d,  __m128i, __m256d, __m256i, __m512d and __m512i 

are treated in the same way as __m128, __m256 and __m512. 

 
Under 32-bit Windows and 32-bit Linux, the first three parameters of type __m64 are 

transferred in registers MM0 - MM2. Any additional parameters of type __m64 are transferred 

on the stack aligned by 4. Under 64-bit Linux, __m64 parameters are passed on the stack. 

__m64 may not be supported in some 64-bit Windows compilers (see p. 13). Return values of 

type __m64 are transferred in RAX in 64-bit Windows, and in MM0 on all other platforms. 

 
Under 32-bit Windows and 32-bit Linux, the first three parameters of type __m128 are 

transferred in registers XMM0 - XMM2. Any additional parameters of type __m128 are 

transferred on the stack aligned by 16. This alignment is accomplished as follows: If there 
are more than three parameters of type __m128 then the stack must be aligned by 16 before 

the call instruction. Consequently, the value of the stack pointer is 12 modulo 16 at the entry 
of the called function. The parameter space on the stack is padded, if necessary, to align 
the parameters of type __m128 by 16. In 64-bit Windows, parameters of type __m128 are 

passed by a pointer to an aligned copy. In 64-bit Linux, the first eight parameters of type 
__m128 are transferred in registers XMM0 - XMM7. Any additional parameters of type __m128 

are transferred on the stack aligned by 16. If there are more than eight parameters of type 
__m128 then the stack space is padded, if necessary, to align the parameters. Return values 

of type __m128 are transferred in XMM0 on all platforms. __m256 and __m512 parameters are 

transferred analogously to __m128 parameters, except for the fact that in some systems they 

are aligned by 16, in other systems by 32/64, when transferred on the stack. 
 
The __vectorcall convention in Windows allows up to six vector registers to be used for 

function parameters (ZMM0 - ZMM5), and up to four vector registers to be used for function 

return. A shadow space of 8 bytes is allocated for each vector register parameter. See 
https://docs.microsoft.com/en-us/cpp/cpp/vectorcall for details. 

 
1 Gcc compiler 9.0 has a bug here. 

https://docs.microsoft.com/en-us/cpp/cpp/vectorcall
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89597
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8 Name mangling 
Name mangling (also called name decoration) is a method used by C++ compilers to add 
additional information to the names of functions and objects in object files. This information 
is used by linkers when a function or object defined in one module is referenced from 
another module. Name mangling serves the following purposes: 
 

1. Make it possible for linkers to distinguish between different versions of overloaded 
functions. 
 

2. Make it possible for linkers to check that objects and functions are declared in 
exactly the same way in all modules. 
 

3. Make it possible for linkers to give complete information about the type of unresolved 
references in error messages. 

 
Name mangling was invented to fulfill purpose 1. The other purposes are secondary 
benefits not fully supported by all compilers. 
 
The minimum information that must be supplied for a function is the name of the function 
and the types of all its parameters as well as any class or namespace qualifiers. Possible 
additional information includes the return type, calling convention, etc. All this information is 
coded into a single ASCII text string which looks cryptic to the human observer. The linker 
does not have to know what this code means in order to fulfill purpose 1 and 2. It only needs 
to check if strings are identical. 
 
Different C++ compilers use different name mangling schemes. Previously, there was no 
need to standardize name mangling because the object files produced by different 
compilers were incompatible anyway for other reasons. However, since data representation, 
calling conventions, and other details are now being standardized to an increasing degree in 
the official ABI (Application Binary Interface) standards of new operating systems, there is 
good reason to standardize name mangling schemes as well. 
 
Unfortunately, few compiler vendors have cared to publish the details of their name 
mangling schemes. This is the reason why I have studied the name mangling schemes of 
several different C++ compilers and published the detailed results here. 
 
Compiler makers typically use the same name mangling scheme on different hardware 
platforms. Though the information given here has been gathered by investigating compilers 
for the 16, 32 and 64 bit x86 platforms, it is likely to apply to other platforms as well, and 
possibly even to other programming languages. Not all mangling schemes are covered in 
this report. There are other schemes used on other platforms, often resembling the 
schemes described here as Gnu. 
 
The codes used for parameter types, calling conventions, etc. are given in the tables below. 
The complete syntax for each compiler is given in the following sections. The syntax is 
written in extended Bacchus Naur notation. For example, 
 

<a> ::= <b>  |  [<c>]  [< 𝑑 >]𝑥
𝑦
 

 
means that syntax element <a> must consist of either syntax element <b> or zero or one 

instance of <c> followed by at least x and at most y instances of <d>. Spaces may be 

included in the syntax specification for the sake of readability, but the coded string cannot 
contain spaces. 
 
The codes for parameter types etc. are given in the tables below. The syntax details are 
described in the following sections for each name mangling scheme. 
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Table 9.  Type codes 

type Microsoft Borland Watcom Gnu2 Gnu3+ 
ABI v.3 

Gnu4+ 
ABI v.4+ 

void X v v v v v 

bool _N 4bool q b b b 

char D c a c c c 

signed char C zc c Sc a a 

unsigned char E uc uc Uc h h 

short int F s s s s s 

unsigned short int G us us Us t t 

int H i i i i i 

unsigned int I ui ui Ui j j 

long int J l l l l l 

unsigned long int K ul ul Ul m m 

long long 

(__int64) 

_J j z x x1 x2 

unsigned long long 

(unsigned __int64) 

_K uj uz Ux y1 y1 

wchar_t _W (G) b w w w w 

float M f b f f f 

double N d d d d d 

long double O, _T, _Z 3 g t r e e 

_Float16      DF16_ 

__complex__ float    Jf Cf Cf 

__complex__ double    Jd Cd Cd 

__m64 T__m64@@    U8__vectori 

5__m64 

Dv2_i 

__m128 T__m128@@    U8__vectorf 

6__m128 

Dv4_f 

__m128d U__m128d@@    U8__vectord 

7__m128d 

Dv2_d 

__m128i T__m128i@@    U8__vectorx 

7__m128i 

Dv2_x 

__m128h      Dv8_DF16 

__m256 T__m256@@    U8__vectorf 

6__m256 

Dv8_f 

__m256d U__m256d@@    U8__vectord 

7__m256d 

Dv4_d 

__m256i T__m256i@@    U8__vectorx 

7__m256i 

Dv4_x 

__m256h      Dv16_DF16 

__m512 T__m512@@    U8__vectorf 

6__m512 

Dv16_f 

__m512d U__m512d@@    U8__vectord 

7__m512d 

Dv8_d 

__m512i T__m512i@@    U8__vectorx 

7__m512i 

Dv8_x 

__m512h      Dv32_DF16 

       

varargs ... Z e e e z z 

       

const X X xX xX X X X 

X * PEAX4 pX pnX PX PX PX 

const X * PEBX4 pxX5 pnxX5 PCX5 PKX5 PKX5 

volatile X * PECX4 pwX5 pnyX5 PVX5 PVX5 PVX5 

const volatile X * PEDX4 pxwX5 pnyxX5 PCVX5 PVKX5 PVKX5 

X * const QEAX4 xpX5 pnX PX PX PX 

X * volatile REAX4 wpX5 pnX PX PX PX 

X * const volatile SEAX4 xwpX5 pnX PX PX PX 

const X * const QEBX4 xpxX5 pnxX5 PCX5 PKX5 PKX5 

X * __restrict PEIAX4   PX PX PX 

X & AEAX4 rX rnX RX RX RX 

X &&     OX OX 

const X & AEBX4 rxX5 rnxX5 RCX5 RKX5 RKX5 

volatile X & AECX4 rwX5 rnyX5 RVX5 RVX5 RVX5 

const volatile X & AEDX4 rxwX5 rnyxX5 RCVX5 RVKX5 RVKX5 

X[ ] (as global 

object) 

PAX4, 6  []X    

X[][8] (as global 

object) 

PAY07X4,6,7  [][8]X    

X[][16][5] (as 

glob obj) 

PAY1BA@4X4,6,

7 

 [][16][5]X    

X[ ] (as function 

parameter) 

QEAX4 pX pnX PX PX PX 
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const X[] (as 

function param.) 

QEBX4 xpX pnxX5 PCX5 PKX PKX 

X[][8] (as func-

tion parameter) 

QEAY07X4,7 pa8$X pn[8]X PA7_X PA8_X PA8_X 

X[][16][5] (as 

function param.) 

QEAY1BA@4X4,

7 

pa16$a5$X pn[16][5]X PA15_A4_X PA16_A5_X PA16_A5_X 

X near * PAX4 pX pnX    

X far * PEX4 nX pfX    

X huge * PIX4 upX phX    

X _seg *  urX     

X near & AAX4 rX rnX    

X far & AEX4 mX rfX    

X huge & AIX4 umX rhX    

       

union X TX@@ <LX>8X $X$$ G9<LX>8X <LX>8X <LX>8X 

struct X UX@@ <LX>8X $X$$ G9<LX>8X <LX>8X <LX>8X 

class X VX@@ <LX>8X $X$$ G9<LX>8X <LX>8X <LX>8X 

enum X W4X@@ <LX>8X $X$$ <LX>8X <LX>8X <LX>8X 

enum Y::X W4X@Y@@ <LX+LY+1>8Y

@X 

$X$:Y$$ Q2<LY>Y<LX

>8X 

N<LY>Y<LX>8

X 

N<LY>Y<LX>8

X 

       

X (*Y)(W)10 P6AXW@Z11 pqW$X pn(W)X12 PFW_X PFXWE PFXWE 

X Y::*V13 PEQY@@X4,14 M<LY>8YX m$Y$$nX12 PO<LY>8Y_X M<LY>8YX M<LY>8YX 

X (Y::*V)(W)15 P8Y@@EAEXW

@Z4,16 

M<LY>8YqW$X m$Y$$n(W)X1

2 

PM<LY>YFP<

LY>YW_X 

M<LY>8YFXWE M<LY>8YFXWE 

notes: 
1 In 64-bit Linux/BSD/Mac, long int and long long is the same, but with different mangling 

codes. 
3 The implementation of long double in Microsoft compilers has the same precision as 

double (64 bits) and uses the code O (capital letter O). A different symbol is used when 80 
bits precision is supported. The Intel compiler uses the code _T when 80 bits is used and O 

when 64 bits is used. The Symantec/Digital Mars compiler uses the code _Z for 80 bits. 
4. The E symbol is a pointer base symbol according to table 13. It is only used in 64 bit 

mode. The A, B etc. symbol is the storage class of the target, according to table 10. 
5. The letter before X is the storage class of the target, according to table 10. The letter 
before p is the storage class of the pointer itself. 
6. See page 30 for a comment. 
7. After QAY follows: the number of dimensions minus 1, then each dimension except the first 

one. These numbers are all coded in the way described in table 18 page 34. 
8. <LX> = length of name X, <LY> = length of name Y, as decimal numbers. 
9. The G prefix is only used when a union, struct or class appears as a function parameter. 

It is not used with pointers or references to these or when the type appears as a template 
argument. The G comes before Q2 if the name has a qualifying namespace. 
10. Y is a pointer to a function with argument type W and return type X. In the code columns, X 
and W represent the codes for types X and W. 
11. Replace 6 with 7 if far. A represents the calling convention, using table 16. It may be 

followed by a return type modifier code from table 12. 
12. Insert any return type modifier or target modifier (table 12) before the return type, and any 
member function access code (table 15) before (. 
13. V is a pointer to a data member of class Y of type X. In the code columns, X and Y 
represent the codes for types X and Y, <LY> represents the length of the name Y. 
14. Q qualifies the target. Replace with R if const, S if volatile, T if const volatile. 
15. V is a pointer to a function member of class Y with argument type W and return type X. In 
the code columns, X ,Y and W represent the codes for types X, Y and W, <LY> represents the 

length of the name Y. 
16. Replace 8 with 9 if far. A represents a member function access code, using table 15. It is 

omitted in 16-bit mode. The second E represents the calling convention, using table 16. It 

may be followed by a return type modifier code from table 12. 
 

Table 10.  Storage class codes 

storage class Microsoft Borland Watcom Gnu2 Gnu3+ 
(default) A  n   
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near A  n   

const B x nx C K 

volatile C w ny V V 

const volatile D xw nyx CV VK 

far E  f   

const far F  fx   

volatile far G  fy   

const volatile far H  fyx   

huge I  h   

__unaligned F     

__restrict I     

Example:  const int a; 

 

Table 11.  Function distance codes 

calling distance Microsoft Borland Watcom Gnu2 Gnu3+ 
near Y or Q  n   

far Z or R  f   

Example:  void far Function1 (int x); 

 

Table 12.  Storage class codes for return 

storage class Microsoft Borland Watcom Gnu2 Gnu3+ 
default ?A     

const ?B  x   

volatile ?C  y   

const volatile ?D  yx   

Example:  const int Function2 (int x); 

 

Table 13.  Pointer base codes 

pointer base Microsoft 
segment relative (16 and 32 bit mode)  

absolute (64 bit mode) E 

__based (64 bit mode) M 

 

Table 14.  Member function modifier codes (Microsoft only) 

storage or call type private protected public 

default A I Q 

far B J R 

static C K S 

static far D L T 

virtual E M U 

virtual far F N V 

Example:  public: virtual int Class1::MemberFunction3 (int x); 

 

Table 15.  Member function access codes 

storage for this target Microsoft Borland Watcom Gnu2 Gnu3+ 
default A     

const B x .x   

volatile C w .y   

const volatile D xw .yx   

Example:  int Class1::MemberFunction4 (int x) const; 
 

Table 16.  Function calling convention codes 

calling convention Microsoft Borland Watcom Gnu2 Gnu3+ 
__cdecl A17     

__pascal C (uppercase)    

__fortran C qf    

__thiscall E     

__stdcall G qs   @<size>  

__fastcall I17 qr    

__msfastcall  qm    

__regcall E     
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__vectorcall Q    @@<size> 

interrupt A qi    

Example:  int __stdcall Function5 (int x); 

notes: 
17. In 64-bit mode, this calling convention is coded as A. 

 

Table 17.  Operator name codes 

operator Microsoft Borland Watcom Gnu2 Gnu3+ 
constructor X ?0 $bctr $ct _ C1,C2 

destructor ~X ?1 $bdtr $dt _$ D1 

operator [] ?A $bsubs $od __vc_ ix 

operator () ?R $bcall $op __cl_ cl 

operator -> ?C $barow $oe __rf_ pt 

operator ++X, X++18 ?E $binc $og __pp_ pp 

operator --X, X--18 ?F $bdec $oh __mm_ mm 

operator new ?2 $bnew $nw __nw_ 19 nw 

operator new[] ?_U $bnwa $na __vn_19 na 

operator delete ?3 $bdele $dl __dl_19 dl 

operator delete[] ?_V $bdla $da __vd_19 da 

operator *X ?D $bind $of __ml_ de 

operator &X ?I $badr $ok __ad_ ad 

operator +X ?H $badd $oj __pl_ ps 

operator -X ?G $bsub $oi __mi_ ng 

operator ! ?7 $bnot $oc __nt_ nt 

operator ~ ?S $bcmp $oq __co_ co 

operator ->* ?J $barwm $ol __rm_ pm 

operator X * Y ?D $bmul $of __ml_ ml 

operator / ?K $bdiv $om __dv_ dv 

operator % ?L $bmod $on __md_ rm 

operator X + Y ?H $badd $oj __pl_ pl 

operator X - Y ?G $bsub $oi __mi_ mi 

operator << ?6 $blsh $ob __ls_ ls 

operator >> ?5 $brsh $oa __rs_ rs 

operator < ?M $blss $rc __lt_ lt 

operator > ?O $bgtr $re __gt_ gt 

operator <= ?N $bleq $rd __le_ le 

operator >= ?P $bgeq $rf __ge_ ge 

operator == ?8 $beql $ra __eq_ eq 

operator != ?9 $bneq $rb __ne_ ne 

operator X & Y ?I $band $ok __ad_ an 

operator | ?U $bor $os __or_ or 

operator ^ ?T $bxor $or __er_ eo 

operator && ?V $bland $ot __aa_ aa 

operator || ?W $blor $ou __oo_ oo 

operator = ?4 $basg $aa __as_ aS 

operator *= ?X $brmul $ab __aml_ mL 

operator /= ?_0 $brdiv $ae __adv_ dV 

operator %= ?_1 $brmod $af __amd_ rM 

operator += ?Y $brplu $ac __apl_ pL 

operator -= ?Z $brmin $ad __ami_ mI 

operator <<= ?_3 $brlsh $ah __als_ lS 

operator >>= ?_2 $brrsh $ag __ars_ rS 

operator &= ?_4 $brand $ai __aad_ aN 

operator |= ?_5 $bror $aj __aor_ oR 

operator ^= ?_6 $brxor $ak __aer_ eO 

operator , ?Q $bcoma $oo __cm_ cm 

operator TYPE() ?B $o<L>TYPE20 $cv __op<L>TYPE_20 cv<L>TYPE20 

virtual table ?_7      

Example:  Class1 operator + (Class1 & a, Class1 & b); 

notes: 
18. X++ is distinguished from ++X by a dummy int parameter. 
19. If the operator is not a class member and there are no extra parameters, i.e. if the built-in 
operator is replaced, then the full mangled name is replaced by ___builtin_new, 

___builtin_vec_new, ___builtin_delete, or ___builtin_vec_delete. 
20. <L> is the length of the name of TYPE. 
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8.1 Microsoft name mangling 

Microsoft compilers use a name mangling syntax that includes all information needed to 
check that an object or function is declared in exactly the same way in all modules (except 
for array sizes). It is also designed to be as short as possible, while allowing case-
insensitive linking. The code is unambiguous so that the complete C++ declaration of an 
object or function can be recovered from a mangled name. Several other compilers for 
Windows use the same or almost the same name mangling scheme. 
 
The public mangled name of a global object is composed according to the following syntax: 
 
<public name> ::= ? <name> @ [ < namespace > @]0

∞ @ 3 <type> <storage class>  

 
The mangled name of a static class member object is: 
 
<public name> ::= ? <name> @ [ < class name > @]1

∞ @ 2 <type> <storage class>  

 
<name> is the case sensitive C++ name of the object. 

 
<namespace> is any namespace surrounding the object. 

 
<class name> is the class the object belongs to or a namespace. Class names and 

namespaces are treated as equivalent. In case of nested classes or namespaces, the 
innermost class or namespace comes first. 
 
<type> is the code for object type, taken from table 9. 

 
<storage class> is any storage modifier, taken from table 10. The default is A. This code is 

replaced by Q1@ for member pointers and member function pointers, regardless of storage 

class. 
 
Pointers and references include the <pointer base> and <storage class> code for the 

target. <pointer base> is a pointer base code according to table 13, which is used only in 

64-bit mode. Global pointers and references (including function pointers and member 
pointers) in 64-bit systems include the <pointer base> twice, both before the <storage 

class> code of the target and before the <storage class> code of the pointer or reference 

itself. (Early 64-bit C++ compilers didn't have <pointer base> codes). 

 
Examples: 
int alpha; 

is coded as 
?alpha@@3HA 

 
char beta[6] = "Hello"; 

is coded as 
?beta@@3PADA 

 
double Class1::gamma[10][5]; 

is coded as 
?gamma@Class1@@2PAY04NA 

 
int * delta; 

is coded in 16-bit and 32-bit systems as 
?delta@@3PAHA 

and in 64-bit systems as 
?delta@@3PEAHEA 

 
Note that global arrays are coded as pointers (P) while arrays as function parameters are 

coded as pointer constants (Q). This should have been opposite, since arrays as function 

parameters are equivalent to non-constant pointers, while global arrays are equivalent to 
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pointer constants. Apparently, this illogical coding has been retained in almost all compilers 
for the sake of compatibility with legacy code. The first 64-bit C++ compilers used _O instead 
of P for global arrays, but they soon returned to the P syntax. The consequence of this 

illogical coding is that an array in one module can be confused with a pointer with the same 
name in another module, while pointers and arrays as function parameters are not treated 
as equivalent even though they are equivalent in the C++ syntax. 
 
The mangled name of a global function is composed according to the following syntax: 
 
<public name> ::= ? <function name> @ [ < namespace > @]0

∞ @ <near far>  

<calling conv> [<stor ret>] <return type> [ < parameter type >]1
∞ <term> Z 

 
<near far> is Y for near, Z for far. Far calls are only possible in 16-bit mode. 

 
<calling conv> is the calling convention, taken from table 16. The default is A. 

 
<stor ret> defines the storage class of the return, using the codes in table 12. It is omitted 

for simple types if the storage class is not const or volatile. It is always included if the 

return type is a struct, class or union. 

 
<return type> is the type returned by the function, taken from table 9. 

 
<parameter type> is the type of each function parameter, taken from table 9. 

 
<term> is  @  except if the parameter list is void (X) or ends with ... (Z). In these cases, the @ 

is omitted because the list is sure to end here. 
 
Example: 
void Function1 (int a, int * b); 

is coded as 
?Function1@@YAXHPAH@Z 

 
The mangled name of a class member function is composed according to the following 
syntax: 
 
<public name> ::= ? <function name> @ [ < class name > @]1

∞ @ <modif> [<const vol>] 

<calling conv> [<stor ret>] <return type> [ < parameter type >]1
∞ <term> Z 

 
<modif> defines the private, protected, public, static, virtual, near and far modifiers of a 

member function according to table 14.  Far calls are only possible in 16-bit mode. 
 
<const vol> is a member function access code from table 15. The default is A. It is omitted 

for static member functions. 
 
The default calling convention for non-static member functions in 16 bit mode is C 

(__pascal), in 32 bit mode it is E (thiscall). In 64 bit mode the only possible calling 

convention is A. The default calling convention for static member functions is A. 

 
Example: 
int Class1::MemberFunction(int a, int * b); 

is coded in 32-bit mode as 
?MemberFunction@Class1@@QAEHHPAH@Z 

and in 64-bit mode as 
?MemberFunction@Class1@@AEAAHHPEAH@Z 

 
Constructors, destructors, operators and member operators are coded in the same way as 
functions, by replacing  <function name>@  with the operator name taken from table 17. The 

return type of constructors and destructors is replaced with @. 
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Virtual tables are coded as  ??_7[ < class name > @]1
∞ @6B@ 

 
Template functions and template classes are coded by replacing  <function name>  or  

<class name>    by    ?$ <name> @ [ < template parameter >]1
∞  

where  <name>  is the name of the templated function or class. If the template parameter is a 

typename or class then  <template parameter>  is a type as defined in table 9. If the 

template parameter is a constant, then  
<template parameter>  ::=  $0 <integer> 

where <integer> is coded as explained in table 18 below. 

 

Abbreviations for repeated names and parameter types 

The name mangling scheme includes two means of shortening mangled names that would 
contain the same name or type more than once. The first method involves repeated types, 
the second method involves repeated names. 
 
Abbreviation of repeated types. This method applies to type declarations in a function 
parameter list or function pointer parameter list. Only types that need more than one 
character for its code are included in this scheme. This includes pointers, references, 
arrays, bool, __int64, struct, class, union, and enum parameters. The first such parameter 

in a parameter list is assigned the number 0, the second such parameter is assigned the 

number 1, and so forth. Simple types that are encoded with a single letter are not assigned 

a number. Any repeated instance of a type with an assigned number in the parameter list is 
replaced by the number of the first instance. The maximum number is 9. If the number 

would exceed 9 then the repeated instance must use the full declaration. The return type is 

not included in the type abbreviation scheme. 
 
Example: 
bool ExampleFunction (int*a, int b, int c, int*d, bool e, bool f, bool*g); 

is coded as 
?ExampleFunction@@YA_NPAHHH0_N1PA_N@Z 

Here, the return type bool is coded as _N. int*a is coded as PAH, which is assigned the 

number 0. int b is coded as H, and is not assigned a number because it is coded as a 

single letter. int c is also coded as H because single letter codes are not abbreviated. int*d 

has the same type as a, and is abbreviated to the number 0. bool e is coded as _N and is 

assigned the number 1. The previous instance of _N was a return type, so it cannot be 

copied. bool f has the same type as e and is replaced by the number 1. The bool in 

bool*g is not abbreviated because sub-expressions cannot be abbreviated. 

 
If the parameter list contains a function pointer, then the parameter types inside the function 
pointer type declaration are included in the abbreviation scheme, both as sources that can 
be assigned numbers and as targets that can be abbreviated. The return type in the function 
pointer type declaration is not included. If the return type of a function declaration is a 
function pointer, then the parameters, but not the return type, of this function pointer 
declaration are included in the type abbreviation scheme of the whole function declaration. 
 
Example: 
typedef int * (* FunctionPointer) (int * a, int * b); 

FunctionPointer WeirdFunction(FunctionPointer x,FunctionPointer y,int*z); 

is coded as 
?WeirdFunction@@YAP6APAHPAH0@ZP6APAH00@Z10@Z 

Here, the code for int * is PAH, and the code for FunctionPointer without abbreviation 

would be P6APAHPAHPAH@Z. The first occurrence of FunctionPointer is in the return type of 

WeirdFunction. Within this occurrence, the first occurrence of PAH is the return type which is 

excluded from the abbreviation scheme. The second occurrence of PAH, representing int*a, 

is assigned the number 0. The third occurrence of PAH, representing int*b, is replaced by 0. 

The second occurrence of FunctionPointer represents parameter x. Within this, the first 

occurrence of PAH is not abbreviated because it represents the return type of 
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FunctionPointer. The next two occurrences of PAH, representing a and b in x, are both 

replaced by the 0 that has already been assigned. The entire sequence representing 

parameter x is thus P6APAH00@Z. This sequence is assigned the number 1. FunctionPointer 

y  is simply reduced to 1, and int*z is reduced to 0.  

 
Abbreviation of repeated names. This method applies to any name that appears inside a 
declaration, such as structures, classes, unions, enums, and namespaces. If any such 
name occurs more than once in a mangled name, then all but the first occurrence will be 
replaced by a number, no matter how short the name is. The number will represent a copy 
of the name, but not its context or meaning. A name can be copied even if the different 
occurrences of the name have different meanings (because of namespace or class scope 
qualifications). The algorithm is as follows: First eliminate any repeated types using the first 
abbreviation method. Any names that have been eliminated by the type abbreviation 
method need no further consideration. Then assign numbers to the first occurrence of each 
name. The first name, which is usually the function's name (except for constructors, 
destructors, operators and template functions), is assigned the number 0, the second name 

is 1, and so forth. Each repeated name is then eliminated by replacing  <name>@  with the 

number. If the number would be higher than 9 then the name cannot be eliminated. 

 
Example: 
Class1 * SomeFunction (Class1 * a, Class2 * b, Class2 * c, Class2 & d); 

is coded as 
?SomeFunction@@YAPAVClass1@@PAV1@PAVClass2@@1AAV2@@Z 

Here, parameters b and c have the same type, so  Class2 * c  is reduced by the first 

method, and simply becomes a 1. The last parameter Class2 & d cannot be reduced by the 

type abbreviation method because b and d have different types. Neither can the double 

occurrence of the name Class1, because the type abbreviation method doesn't apply to 

return types. The name abbreviation method now assigns the numbers SomeFunction = 0, 

Class1 = 1, Class2 = 2. Now parameter a can be changed from PAVClass1@@ to PAV1@, and 

parameter d is changed from AAVClass2@@ to AAV2@. 

 
Templated names and template parameters are isolated from the numbering of names. This 
means that a name inside a template argument can only be eliminated if there are multiple 
occurrences of this name within the same templated name. Likewise, templated names are 
isolated from each other, even if they are identical. In case of nested templates, each sub-
template has its own isolated number sequence. 
 
Example: 
void Class1::MyTemplateFunction<Class1> (Class1*); 

will be coded as 
??$MyTemplateFunction@VClass1@@@Class1@@QAEXPAV0@@Z 

Here, the templated name  MyTemplateFunction<Class1>  is coded as  

?$MyTemplateFunction@VClass1@@. This template has its own number sequence 

(MyTemplateFunction = 0, VClass1 = 1), which is isolated from the rest. The first name in the 

rest of the code is the representation of the scope Class1:: coded as Class1@. This 

occurrence of Class1 gets the number 0. The parameter Class1*, which was first coded as  

PAVClass1@@  is now changed to PAV0@, where the 0 refers to the name in Class1::, not the 

name in <Class1>. 

Coding of numbers 

Numbers within mangled names are needed for array dimensions, array sizes, and template 
parameters. These numbers are coded according to the algorithm in table 18. It appears 
that this algorithm was designed to make the coding as short as possible, rather than 
making it human readable. 
 



 34 

Table 18.  Microsoft number encoding 

range for N coding 

1  N  10 (N - 1) as a decimal number 

N > 10 code N as a hexadecimal number without leading zeroes, 
replace the hexadecimal digits 0 - F by the letters A - P, end 
with a @ 

N = 0 A@ 

N < 0 ? followed by ( - N) coded as above 

 

8.2 Borland name mangling 

This name mangling scheme is used only by Borland compilers. 
 
The name of a global object without class or namespace qualifiers is not mangled, except 
for un underscore prefix: 
 
<public name> ::= _ <name> 

 

A global object with class or namespace qualifiers is coded as 
 
<public name> ::= [@ < class name >]1

∞ @ <name> 

 
where <class name> is a class or namespace. In case of nested classes or namespaces, the 

outermost comes first. 
 
Functions, member functions, constructors, destructors and operators are all coded 
according to the following syntax: 
 
<public name> ::= [<template prefix>] [@ < class name >]0

∞ @ <name> $ [<const vol>] q 

[<calling convention>] [ < parameter type >]1
∞ 

 
<template prefix> is  @  if the function is a template function or member of a template class, 

otherwise nothing. 
 
<const vol>  is a member function access code from table 15. It is omitted by default. 

 
<calling convention>  defines the calling convention as given in table 16. It is omitted by 

default. There is no distinction between near and far calling. 
 
<parameter type>  defines each function parameter, using the codes in table 9. The return 

parameter is not coded. 
 
For constructors, destructors and operators, replace <name> by an operator name from table 

17. 
 
Template functions have no special encoding other than the  @  prefix, as the template 

parameters are implied by the function parameter types. The Borland compilers I have 
tested only support such cases of template functions where the template parameters can be 
inferred from the function parameters. 
 
Template class member functions and member objects are coded by replacing  
<class name> by 

 
% <name> [$t < type code >   |  $ii$ < value >]1

∞% 

 
Global objects of a template class are not mangled if in the global namespace. 
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Virtual tables are encoded as 
@@<class name>@3 

 
Type codes that appear more than once in the <parameter type> list of a function are 

abbreviated if the type is a pointer, reference, array, struct, class, union, enum or bool, but 

not if it is a simple type with one or two-letter code. All parameters are assigned a number, 
beginning with 1. The code t1 repeats the first parameter, t2 repeats the second parameter, 

ta repeats the 10'th parameter, tz repeats parameter number 35. Further parameters 

cannot be copied. If the parameter list contains a function pointer, then the list of 
parameters for the target function has its own isolated number sequence, so that type codes 
within the parameter list of the target function can be abbreviated, but not the return type of 
the target function. There is no method for abbreviating repeated names that are not part of 
identical parameter types. 
 
Examples: 
char beta[6] = "Hello"; 

is coded as 
_beta 

 
double Class1::gamma[10][5]; 

is coded as 
@Class1@gamma 

 
bool ExampleFunction (int*a, int b, int c, int*d, bool e, bool f, bool*g); 

is coded as 
@ExampleFunction$qpiiit14boolt5p4bool 

 
void TemplateClass<float>::MemberFunction (TemplateClass<float>*); 

is coded as 
@@%TemplateClass$tf%@MemberFunction$qp18%TemplateClass$tf% 

 

8.3 Watcom name mangling 

This name mangling scheme is used only by Watcom compilers. 
 
The public mangled name of a global object is composed according to the following syntax: 
 
<public name> ::= W? <name> $ [ : < namespace > $]0

∞ <storage class> <type>   

 
where <storage class> is taken from table 10 and <type> is taken from table 9. <namespace> 

can be any namespace or class qualifier, the innermost first. 
 
Examples: 
int alpha; 

is coded as 
W?alpha$ni 

 
char beta[6] = "Hello"; 

is coded as 
W?Beta$npna 

 
double Class1::gamma[10][5]; 

is coded as 
W?gamma$:Class1$n[][5]d 

 
Functions, member functions, constructors, destructors and operators are coded as follows: 
 
<public name> ::= W? <function name> $ [ : < class name > $]1

∞ <near far> [<const vol>] 

( [ < parameter type >]0
∞ ) [<stor ret>] <return type> 
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<class name> is a class name or namespace. In case of nested classes or namespaces, the 

innermost comes first. 
 
<near far> is n for near or f for far. Far calls are only possible in 16 bit mode. 

 
<const vol> is a member access code from table 15. It is omitted by default. 

 
<parameter type> defines the type of each function parameter according to table 9. No 

<parameter type> is included if the parameter list is (void). 

 
<stor ret> is a return type storage class from table 12. It is omitted by default. 

 
<return type> defines the return type according to table 9. 

 
Example: 
bool ExampleFunction (int*a, int b, int c, int*d, bool e, bool f, bool*g); 

is coded as 
W?ExampleFunction$n(pniiipniqqpnq)q 

 
Constructors, destructors and operators are coded by replacing  <function name>$  with a 

name from table 17. The return type of constructors and destructors is replaced by _. 

 
Names that appear more than once in a mangled code are reduced by replacing all but the 
first occurrence of a name by a reference to the first occurrence. The first occurrence of 
each name is assigned a number, starting with 0. A repeated occurrence of a name is then 

abbreviated by replacing <name>$ by one of the numbers 0 - 9. No replacement is possible if 

a higher number would be needed. A name can be replaced even if the repeated 
occurrence has a different meaning or context. There is no method for abbreviating 
repeated types. 
 
Virtual tables have the funny code 
<public name> ::=  W?$Wvf <nl> o4: <class name> $$nx[]pn()v 

where <nl> is the length of the class name + 4, coded as a two-digit base 36 number with 

digits 0-9, a-z. 

 
Template classes are coded by replacing  <class name>$  by  

<name>$::[1n < type >   |  0 < number >]1
∞ 

where  <type>  is a template type parameter, and  <number>  is a template integer 

parameter, coded as a base-32 number with digits 0-9, a-v, followed by a suffix z if positive 

or zero, and y if negative. Template functions have no special encoding as the template 

parameters are implied by the function parameter types. The Watcom compilers I have 
tested only support such cases of template functions where the template parameters can be 
inferred from the function parameters. 
 

8.4 Gnu 2 name mangling 

This mangling scheme is used in Gnu C++ version 2.x.x under several operating systems 
(Linux, BSD, Windows). Later versions of Gnu C++ use a different scheme described in the 
next section. 
 
The Gnu2 mangling scheme is a dialect of the scheme used by cfront, one of the oldest 
C++ tools. Variants of this scheme are widely used in UNIX systems (See: J. R. Levine: 
Linkers and Loaders. Morgan Kaufmann Publishers, 2000). 
 
The type of a global object is not coded, only class or namespace qualifiers, if any: 
 
<public name> ::= [_ <qualifiers list> <list term> ] <name> 
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where 
<qualifiers list> ::= [<qualifiers count>] [ < name length > < class name >]1

∞ 

 

<list term> ::= . | $ 

 
<qualifiers count> is the number of class or namespace qualifiers. It is omitted if the count 

is 1. It is  Q<number>  if the number is 2 - 9. It is  Q_<number>_  if the number is more than 9. 

All numbers are decimal. Some versions use . as list terminator (Red Hat), other versions 

use $ (FreeBSD, Cygwin, Mingw32). The namespace std is ignored. 

 
char beta[6] = "Hello"; 

is coded as 
beta 

 
char Namespace1::beta[6]; 

is coded as 
_10Namespace1.beta  or  _10Namespace1$beta 

 
Functions and member functions are coded as follows 
 
<public name> ::= <name> _ _ [ <qualifiers list> | F ] [ < parameter type >]1

∞ 

 
The <qualifiers list> is replaced with an  F  if there are no class or namespace qualifiers. 

 
<parameter type> is the type of each function parameter, as defined by table 9. The return 

type and function modifiers are not included. 
 
Types that occur more than once in the parameter list can be repeated according to the 
following rules. Each parameter is assigned a number, beginning with 0. All parameters are 

numbered, regardless of whether they are identical to a previous parameter. A repeated 
occurrence of a parameter is replaced by a reference to the first occurrence if it is a pointer, 
reference, array or other non-simple type. bool is also treated as a non-simple type, while 

long double and unsigned __int64 are treated as simple types. A repeated occurrence of 

a non-simple parameter is replaced by  T <first occur>   where  <first occur>  is the 

number assigned to the first occurrence. If the number is bigger than 9 then  <first occur>  

is followed by an  _ . A sequence of identical types can be replaced by  N <count> <first 

occur>  where  <count>  is the number of identical parameter types to replace and  <first 

occur>  is the number assigned to the first occurrence. Both  <count>  and  <first occur>  

are followed by an  _  if bigger than 9. For obscure reasons, the compiler uses the T 

replacement rather than the N replacement for the first parameter in a sequence of identical 

parameters if the preceding parameter is not the first occurrence of the same type. There is 
no method for abbreviating repeated names that are not part of identical parameter types. 
 
Example: 
bool ExampleFunction (int*a, int b, int c, int*d, bool e, bool f, bool*g); 

is coded as 
ExampleFunction__FPiiiT0bT4Pb 

 
Constructors, destructors and operators are coded in the same way as functions with  
<name>_  replaced by an operator name from table 17. 

 
Template functions are coded as follows 
 
<public name> ::= <name> _ _ H <numtp>[ Z < type parameter >   |  < type > < value > ]numtp

numtp
 

_ [ <qualifiers list> ] [ < parameter type >   |  X < temp. par. num >  1]1
∞ _ <return type> 

 
where  <numtp>  is the number of template parameters,  <type parameter>  is a template 

type parameter,  <value>  is a template constant parameter of type  <type>.  <parameter 

type>  in the list of function parameters is replaced by  X <temp. par. num.> 1  if, and only 
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if, it is explicitly declared as the same type as a template type parameter.  <temp. par. 

num.> is the number of the template parameter referred to, starting at 0. The return type is 

included only for template functions. 
 
Template classes are coded by replacing   <class name length> <class name>  by 
t <name length> <name> <numtp> [ Z < type parameter >   |  < type > < value > ]numtp

numtp 

 
Under Windows, all public names get an additional underscore prefix, for example 
_ExampleFunction__FPiiiT0bT4Pb 

 
The _ prefix is used only under Windows. It is omitted in Linux and FreeBSD, except 

possibly if the old a.out object file format is used. 
 

8.5 Gnu 3 and later name mangling 

This mangling scheme is used in Gnu C++ version 3.x.x and later under several operating 
systems (Linux, BSD, Mac OS X IE32, Windows) and on several platforms. It is described in 
"Itanium C++ ABI". The same scheme is used by Intel compilers for Linux and Mac OS. 
Different variants are available for the Gnu compiler version 4.x.x, specified by the 
command line parameters -fabi-version=3 and -fabi-version=4, etc. A value 

for -fabi-version of 4 or more is preferred when parameters of type __m256 are used. A 

value of 0 gives the latest version. 
 
Earlier versions of Gnu C++ use a different scheme described in the previous section. 
 
The name of a global object without class or namespace qualifiers is not decorated in any 
way: 
 
<public name> ::= <name> 

 

A global object with class or namespace qualifiers is coded as 
 
<public name> ::= _Z <qualified name> 

 
where 
 
<qualified name> ::= N [< simple name >] 2

 ∞ E 

 

<simple name> ::= <name length> <name> 

 
where  <name length>  is the length of each name as a decimal number. In case of nested 

classes or namespaces, the outermost comes first. The object name comes last. 
 
Examples: 
char beta[6] = "Hello"; 

is coded as 
beta 

 
char Namespace1::beta[6]; 

is coded as 
_ZN10Namespace14betaE 

 
There are special abbreviations if the outermost namespace is std. If std is the only 

qualifier, use 
 
<qualified name> ::= St <simple name> 

 

If there are more qualifiers, use 
 
<qualified name> ::= N St [< simple name >] 2

 ∞ E 

http://www.codesourcery.com/public/cxx-abi/abi.html#mangling
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If std is not the outermost qualifier, then it is treated as any other qualifier, i.e. coded as 

3std.  

 
Functions, member functions, constructors, destructors and operators are all coded 
according to the following syntax: 
 
<public name> ::= _Z <simple or qualified name> [ < parameter type >]1

∞ 

 
<simple or qualified name> ::= <simple name> | <qualified name> | <operator name> 

 
<operator name> is an operator name from table 17. Any classes or namespaces come first 

in <qualified name> and the function name comes last. The abovementioned abbreviations 

for std apply. 

 
Example: 
bool Example1Function (int a, int * b, bool c, bool d, bool * e); 

is coded as 
_Z16Example1FunctioniPibbPb 

 
Virtual tables are coded as  
 
<public name> ::= _ZTV <simple or qualified name> 

 
Template functions and template classes are coded by replacing <simple name> by 

 
<simple name> I [ < template parameter >]1

∞ E 

 
<template parameter> ::= <type>  |  L <type> <value> E 

 
where the first option is for template type parameters and the second option for template 
constant parameters. 
 
The return type of a template function is included as the first type in the parameter type list. 
If the template function has no parameters, then the code for void (v) is omitted. This is 

different from non-template functions, where the return parameter is omitted and the void is 
included. 
 
There is a method for abbreviating repeated names and types. This abbreviation scheme 
does not distinguish between names and types. The first occurrence of each name or non-
simple type is assigned a symbol in the following sequence: 
 
S_, S0_, S1_, ... S9_, SA_, SB_, ... SZ_, S10_, S11_, ... 

 
These abbreviation symbols are assigned, in the order of occurrence, to the first occurrence 
of each name of structures, classes, unions, enums and namespaces, but not to the name 
of the function or object itself. The abbreviation symbols are also assigned to all non-simple 
types occurring anywhere in the mangled name. A non-simple type is any type that needs 
more than one character for its encoding, according to table 9. This scheme also assigns 
abbreviation symbols to non-simple types that form part of the declaration of a more 
complex type. For example, the type Class1** gets three abbreviation symbols, for Class1, 

Class1*, and Class1**, respectively. All but the first occurrence of each name or type is 

replaced by the abbreviation symbol, even if the abbreviation symbol is longer than the 
original code. If the same name has more than one meaning because of different class or 
namespace qualifiers, then the occurrences with different meanings are treated as different 
names. 
 
Template type parameters are included in this abbreviation scheme. A repeated occurrence 
of a type in <template parameter> is abbreviated by e.g. S0_. If a function parameter is 
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explicitly declared as the same type as a template parameter, then the first occurrence is 
replaced by T_, T0_, etc., where T_ refers to the first template parameter. A repeated 

occurrence of the template parameter in the function parameter list is abbreviated using the 
S_ scheme. 

 
Example: 
bool Example2Function (int a, int * b, Class1 & c, Class1 d, Class1 & e); 

is coded as 
_Z16Example2FunctioniPiR6Class1S0_S1_ 

 
Under 32-bit Windows and 32- and 64-bit Mac OS, all public names get an additional 
underscore prefix, for example 
__Z16Example2FunctioniPiR6Class1S0_S1_ 

 
There is a separate name mangling scheme for vector functions. This is defined in the 
document Vector Function Application Binary Interface Specification for OpenMP. This is 
used in the libmvec library. 
 

8.6 Intel name mangling for Windows 

Intel compilers for 32 bit and 64 bit Windows use the same name mangling scheme as 
Microsoft. 
 
The Intel compiler comes in two versions, a legacy version named “classic”, and a new 
version named LLVM-based. The latter version is a forking of the Clang compiler and 
behaves very much like the Clang compiler. The following information applies to the 
“classic” version of the Intel compiler. 
 
The Intel compilers can treat the types __m64 and __m128 as intrinsic types when the 

/Qmspp- option is specified. In this case it uses _K, which is the code for unsigned __int64, 

to represent __m64 and __m128. This prevents function overloading. This option is deprecated 

and should be used only when compatibility with legacy code is needed. 
 
Where a function is compiled for automatic CPU dispatching, the following suffixes are 
appended to the (mangled or unmangled) names of CPU-specific functions in order to 
distinguish the version for each CPU: 
 

Table 19.  Intel CPU-specific function name suffixes 

CPU Instruction set Name suffix __intel_cpu_indicator 

Generic specified baseline 
(80386 or higher) 

.A 1 

Pentium Pentium .B 2 

Pentium Pro CMOV .C 4 

Pentium MMX MMX .D 8 

Pentium II CMOV and MMX .E 0x10 

Pentium III no XMM CMOV and MMX .G 0x40 

Pentium III SSE .H 0x80 

Pentium 4 SSE2 .J 0x200 

Pentium M SSE2 .K 0x400 

Pentium 4 w. SSE3 SSE3 .L 0x800 

Core 2 duo Suppl. SSE3 .M 0x1000 

Wolfdale SSE4.1 .N 0x2000 

Atom SSE3 .O 0x4000 

Nehalem SSE4.2 + POPCNT .P 0x8000 

Nehalem PCLMUL + AES .Q 0x10000 

Sandy Bridge AVX .R 0x20000 

https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt
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(unused?)  .S 0x40000 

(unused?)  .T 0x80000 

(unused?)  .U 0x100000 

(unused?) AVX2+FMA3+BMI1/2 .V 0x200000 

Haswell  .W 0x400000 

Skylake RDSEED, ADX, RTM .X 0x800000 

Xeon Phi AVX512F/PF/CD .Y? 0x2000000 

MIC-AVX512 KNL  .Z  

?   0x4000000 

?   0x10000000 

CORE-AVX512 AVX512F/BW/DQ/VL .a  

Knights Mill  .j  

    

 
The dot (.) is replaced by a $-sign on some platforms. __intel_cpu_indicator is an internal 

variable. 
 
Newer versions no longer have a cumulative sequence of added features. The 32-bit 
variable __intel_cpu_indicator is replaced by the 64-bit variable 

__intel_cpu_feature_indicator with one bit for each feature. The name suffixes are still 

used. The following bits of __intel_cpu_feature_indicator have been identified: 
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Table 20.  Intel CPU feature indicator bits 

Instruction set __intel_cpu_feature _indicator bit number 

 0 

x87 1 

CMOV 2 

MMX 3 

FXSAVE 4 

AES 5 

SSE2 6 

SSE3 7 

SSSE3 8 

SSE4.1 9 

SSE4.2 10 

MOVBE 11 

PCLMUL 13 

AES 14 

F16C 15 

RDRAND 17 

FMA (FMA3) 18 

BMI1+BMI2 19 

LZCNT 20 

HLE 21 

RTM 22 

AVX2 23 

AVX512DQ 24 

AVX512F 27 

ADX 28 

RDSEED 29 

AVX512IFMA 30 

AVX512ER 32 

AVX512PF 33 

AVX512CD 34 

SHA 35 

MPX 36 

AVX512BW 37 

AVX512VL 38 

AVX512VBMI 39 

AVX512-4FMAPS 40 

AVX512-4VNNIW 41 

AVX512VPOPCNTDQ 42 

AVX512VBMI2 44 

GFNI 45 

CLWB 49 

RDPID 50 

SGX 53 

  

 
 

8.7 Intel name mangling for Linux 

Intel compilers for 32 bit and 64 bit Linux and Mac OS use the same name mangling 
scheme as Gnu 3.x. In case of CPU dispatching, the suffixes listed above are used. 
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8.8 Symantec and Digital Mars name mangling 

The Symantec and Digital Mars C++ compilers use the same name mangling scheme as 
Microsoft with very few exceptions. I have found the following differences: 
 

• long double has 80 bits precision and is coded as _Z in Symantec/Digital Mars 

compilers. In Microsoft compilers, long double has 64 bits precision (same as 
double) and is coded as O. Intel compilers use _T for 80 bits precision. 

 

• The type wchar_t is coded as _Y, while Microsoft compilers use _W. 

 

• The method for abbreviating types (page 32) applies to bool (_N), but not to other 

two-character codes (_J, _K, _Y, _Z). It does apply to pointers and references to such 

types. 
 

• The coding of member function pointers do not have the member function access 
code and return type modifier code. This may be an obsolete syntax, since it is also 
missing in 16-bit Microsoft compilers. 
 

• Global arrays have the code Q while arrays as function parameters are coded as 

pointers (P) in Symantec and Digital Mars compilers. This is more correct than the 

coding generated by Microsoft compilers, as explained on page 30. 
 

8.9 Codeplay name mangling 

The Codeplay VectorC C++ compiler uses the same name mangling scheme as Microsoft 
with some exceptions. I have not checked it systematically, but I have found the following 
differences: 
 

• long double is supported in both 64 bits and 80 bits precision. Both are coded as O.  

 

• The method for abbreviating types (page 32) does not apply to two-character codes. 
It does apply to pointers and references to such types. 
 

• The coding of data member pointers and member function pointers do not include 
the class name. 
 

• Arrays as function parameters are coded as pointers (P). 

 

• Global one-dimensional arrays are coded with the array size. The encoding of the 
size is slightly different from the Microsoft scheme.  

 

8.10 Other compilers 

The PathScale compiler uses Gnu name mangling. The PGI compiler also uses Gnu name 
mangling, even under Windows. 
 

8.11 Turning off name mangling with extern "C" 
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Table 21.  Function name prefixes with extern "C" declaration 
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(default) _ _  _ _  _ _   

__cdecl _ _  _ _ _ _ _   

__stdcall _ _  _  _ _ _   

__fastcall  @  _ @  _ @   

pascal     UC UC     

__fortran     _ UC     

Explanation: 
_ name has underscore prefix 
@ name has @ prefix 

UC entire name converted to upper case 
 

Table 22.  Function name postfixes with extern "C" declaration 
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(default)      _     

__cdecl           

__stdcall  @S  @S  @S @S @S   

__fastcall  @S    _  @S   

pascal           

__fortran           

Explanation: 
_ underscore appended after name 
@S name followed by @, followed by the combined size of all parameters expressed as 

the number of bytes pushed on the stack as a decimal number. For __fastcall, 

register parameters are included by the size they would have if they were transferred 
on the stack. 

 
The extern "C" attribute on a C++ function turns off name mangling so that the public or 

external name becomes compatible with the C language. This can be useful for solving 
problems with incompatible name mangling schemes. In 16 and 32 bit DOS and Windows 
systems, however, there is still some name decoration. The public and external names get 
the prefixes shown in table 21 and the postfixes shown in table 22. This may cause 
compatibility problems for __stdcall and __fastcall functions. 

 
The extern "C" attribute is only allowed for functions that can be coded in C. Hence, 

overloaded functions and member functions cannot have the extern "C" attribute. When 

compatibility with all compilers is desired, you may give all functions the extern "C" 

attribute, replace overloaded functions by functions with different names, and replace 
member functions by friend functions. 

 
External functions with the __declspec(dllimport) attribute have prefix __imp_ in all 

compilers except Borland. 
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Functions with the names main and WinMain always have extern "C" coding. In addition, 

some compilers give WinMain the __stdcall attribute by default. 

 

8.12 Conclusion 

Various characteristics of the different name mangling schemes are compared in table 23. 
 

Table 23.  Comparison of name mangling schemes 

 Microsoft Borland Watcom Gnu2 Gnu3+ 
unambigous and reversible yes yes yes no no 

includes type of global objects yes no yes no no 

includes storage class yes no yes no no 

includes function return type yes no yes no no 

includes calling convention yes yes no (no) (no) 

includes function modifiers yes few some no no 

compact yes somewhat yes somewhat yes 

allows case insensitive linking yes no no no no 

human readable no yes yes yes yes 

non-C characters used $ @ ? $ @ % $?()[]:. $ or . none 

 
The Gnu2 and Gnu3 schemes use only characters that are valid in C names in most or all 
cases. The reason for this is that these schemes have their origin in tools that convert from 
C++ to C, so the mangled names must be valid C names. This has the disadvantage that 
the mangled name cannot unambiguously be translated back to the original C++ 
declaration. The mangled name of a C++ function could in principle be the unmangled name 
of a variable. This disadvantage is avoided if the mangled code contains characters that are 
not valid in C++ names. On the other hand, the character set should be restricted to 
characters that can be generated by common assemblers in order to allow compilation 
through assembly or linking with assembly language modules. The characters $ ? @ are 

allowed in Microsoft and Borland assemblers. The Gnu assembler allows . and $. The 

Watcom assembler allows all characters in public symbols. 
 
We will prefer that a name mangling scheme is complete, consistent and compact. It should 
also be relatively easy for humans to interpret the code, though this requirement conflicts 
with the desire for compactness. The Microsoft and Gnu3 schemes are the ones that have 
the most consistent syntax. It is recommended that new compilers use one of these two 
schemes for the sake of compatibility. 
 
 

9 Exception handling and stack unwinding 
An exception, a thread termination, or a longjmp can lead to a process where functions are 

exited without the normal return being executed. Objects that go out of scope by this 
process may have destructors that need to be called. In order to find all objects that need to 
have their destructors called, the system must unwind the stack to trace backwards through 
consecutive function calls. Some systems also use stack unwinding for recovering registers 
saved on the stack after an exception. 
 
If a function has any local objects with destructors and if an exception or longjmp or thread 

termination can occur inside the function or any of its child functions, then this function must 
support stack unwinding. Some ABI's require that all functions have stack unwinding 
information if the function saves anything on the stack or calls any other function. The 
method of stack unwinding is different for different systems. This process often uses stack 
frames based on BP/EBP/RBP. The function prolog must save the old value of the frame 

pointer and save the value of the stack pointer in the frame pointer register: 
 

_FunctionWithFramePointer PROC NEAR 
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        PUSH    EBP 

        MOV     EBP, ESP 

        ... 

        MOV     ESP, EBP 

        POP     EBP 

        RET 

_FunctionWithFramePointer ENDP 

 
Additional information about destructors to be called may be provided either by the function 
itself or by data in a static data segment designed for only this purpose. 
 
If a structured exception or longjmp or thread termination can happen inside a function or 

any of its child functions, then it is not allowed to use BP/EBP/RBP for any other purpose 

than a frame pointer in systems that rely on BP being a frame pointer. 

 
Detailed information about specification of the unwind mechanism for x64 systems can be 
found in the respective ABI's. See literature, page 59. I don't have the detailed information 
for 32-bit systems. 
 
 

10 Initialization and termination functions 
A C++ module may contain global objects with constructors that must be called before main 

is called, and destructors to be called after main has returned. There may be other 

initialization and termination tasks to perform, too. For this purpose, the compiler provides a 
list of pointers to initialization functions and termination functions. These lists of function 
pointers are stored in separate data segments designed for only this purpose. These lists 
may contain additional information about the priority or order in which the initialization and 
termination functions should be called. The names of these segments and the format of 
these tables are different for different compilers. 
 
 

11 Virtual tables and runtime type identification 
A class with virtual member functions always has a virtual table. This is a table of member 
function pointers used for finding the right version of a polymorphous function. Each 
instance of the class has a pointer to the virtual table. Microsoft, Borland and Gnu version 
3.x compilers place the pointer to the virtual table at the beginning of the object, while 
Watcom and Gnu version 2.x compilers place it at the end of the object. This affects the 
offset of all data members of the class so that member functions may be incompatible 
between compilers. 
 
Information for runtime type identification is usually stored in connection with the virtual 
table. 
 
The "Itanium C++ ABI" includes more detailed information about the representation of virtual 
tables and runtime type identification. This information may apply to other platforms as well. 
 
 

12 Communal data 
Communal data are data that may occur identically in more than one module, but the final 
executable should contain no more than one instance of this redundant information. The 
linker may check that all instances are identical and store only one instance in the 
executable file. Communal data are used for virtual tables, template instantiations, and 
possibly for global data. 
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A different use of communal data is for data that may or may not be needed in the final 
executable. This is typically the case with the non-inlined versions of inlined functions. The 
compiler does not need this function in the module it is currently compiling, but it may or 
may not be called from a different module. The compiler can then allow the linker to remove 
the communal function if it is not needed. 
 
You cannot expect communal data produced by different compilers to be identical or to be 
identified in the same way in the object files. Assemblers may not support communal data. 
 

13 Memory models 
A memory model defines the address ranges and addressing modes for code and data. 
Different memory models are used for 16-, 32- and 64-bit systems. 

13.1 16-bit memory models 

The historic 16-bit DOS operating system had no protection against accessing false 
addresses and no distinction between physical and logical (virtual) memory addresses. A 
protected operating system can emulate the 8086 memory space using the virtual 8086 
mode of a 32-bit processor. The memory space is divided into segments no bigger than 64 
kbytes. The real address of an object is equal to the segment multiplied by 16 plus the 16-
bit unsigned offset. A maximum segment of 0xFFFF and a maximum offset of 0xFFFF gives 
a maximum total address of 0xFFFF * 0x10 + 0xFFFF = 0x10FFEF. The following memory 
models are used: 

Tiny 

Code and data are contained in the same segment no bigger than 64 kbytes. The code 
starts at address 0x100 relative to the segment start. The executable file does not have the 
usual extension .exe but instead .com. 

Small 

There are two segments of max. 64 kbytes each, one for code and one for data and stack. 

Medium 

The code can exceed 64 kbytes. Far function calls are needed. Data and stack are limited 
to one segment of max. 64 kbytes. 

Compact 

The code is limited to 64 kbytes. The stack is limited to 64 kbytes. Data can exceed 64 
kbytes. Far pointers are used for data. 

Large 

The code can exceed 64 kbytes. Data can exceed 64 kbytes. The stack is limited to 64 
kbytes. Far pointers are used for code and data. 

Huge 

Same as large. A single data structure can exceed 64 kbytes by modifying not only the 
offset but also the segment of a pointer when it is incremented. 

Protected 

Windows 3.x uses protected segmented memory with 16-bit offsets. It is similar to the above 
models, but segment registers contain segment selectors rather than physical addresses. 
Data structures bigger than 64 kbytes can be accessed by adding 8 to the segment 
descriptor for each 64 kbytes increment or by using a 32-bit offset in case a 32-bit processor 
is used. 
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13.2 32-bit memory models 

32-bit Windows, Linux, BSD and Intel-based Mac all use the flat memory model. Application 
code uses only one segment with a maximum size of 2 Gbytes. All pointers use 32-bit 
signed addresses. Negative addresses are reserved for the operating system kernel and 
device drivers. 

13.3 64-bit memory models in Windows 

The combined size of code and static data is limited to 2 Gbytes so that 32-bit self-relative 
(rip-relative) addresses can be used. The image base (see chapter 14) is mostly below 231, 
but not always. 32-bit absolute addresses are rarely used. Dynamically allocated data and 
stack can exceed 2 Gbytes. Pointers are usually 64 bits. 32-bit pointers relative to the image 
base are sometimes used for arrays and pointer tables. Negative addresses are reserved 
for the system kernel. 

13.4 64-bit memory models in Linux and BSD 

Linux x64 small memory model 

This is the default memory model in x64 Linux and BSD. Code and static data are limited to 
2 Gbytes and are always stored at addresses below 231. This allows the compiler to use 32-
bit signed absolute addresses, typically for addressing static arrays. However, later versions 
of the Gnu compiler (version 6 and probably version 5 as well) never use 32-bit absolute 
addresses, and the linker version 2.28 does not allow 32-bit absolute addresses even 
though the small memory model is used (see 
https://stackoverflow.com/questions/43367427/32-bit-absolute-addresses-no-longer-
allowed-in-x86-64-linux). 
 
Dynamically allocated data and stack can exceed 2 Gbytes. Pointers are usually 64 bits. 

Linux x64 medium memory model 

Static data objects bigger than the "large-data-threshold", typically 64 kbytes, are stored in a 
large data section which can exceed 2 Gbytes. Code and smaller static data are still limited 
to addresses below 231. The compiler option is -mcmodel=medium. 

Linux x64 large memory model 

Code and data can exceed 2 Gbytes. Functions and static data are accessed with 64 bit 
absolute addresses, which is quite inefficient. The compiler option is -mcmodel=large. 

Linux x64 position-independent model 

This model is used for shared objects (dynamic libraries). The size of each executable or 
shared object is limited to 2 Gbytes. Functions and data inside the executable are accessed 
with 32-bit relative addresses. External functions and data are accessed through 64-bit 
pointers. The compiler option is -fpic or -fpie (the latter option avoids the use of GOT 

and PLT tables for accessing local data and functions). 

Linux x64 kernel 

The system kernel and device drivers use negative addresses between -231 and 0. 

13.5 64-bit memory models in Intel-based Mac (Darwin) 

The default memory model limits the combined size of code and static data in each 
executable file to 2 Gbytes so that 32-bit self-relative (rip-relative) addresses can be used. 
By default, all code is loaded at addresses above 232. The address space below 232 
(pagezero) is blocked so that any attempt to use 32-bit absolute addresses will generate an 
error. Dynamically allocated data and stack can exceed 2 Gbytes. Pointers are usually 64 
bits. Pointer tables can use 32-bit signed addresses relative to an arbitrary reference point. 

https://stackoverflow.com/questions/43367427/32-bit-absolute-addresses-no-longer-allowed-in-x86-64-linux
https://stackoverflow.com/questions/43367427/32-bit-absolute-addresses-no-longer-allowed-in-x86-64-linux
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Certain system functions can be accessed at fixed 64-bit addresses in the so-called 
commpage. 
 
It is possible to place code at addresses below 231 and reduce the size of pagezero so that 
32-bit absolute addresses can be used, but this is rarely done. 

13.6 64-bit memory models in Cygwin 

Cygwin is a system that emulates the behavior of Linux tools under Windows. Cygwin64 is 
using a medium memory model by default. This means that static data are accessed by 64-
bit absolute addresses. The purpose of this memory model is to make it possible to address 
a data object in another executable file, as described on page 51 below. The performance is 
reduced considerably by the medium memory model. This performance cost can be avoided 
by compiling with the option -mcmodel=small with a gcc or Clang compiler, except in the 

rare case where you are linking directly to a data object in another executable file. 
 
It is recommended to use Mingw64(msys2) instead of Cygwin when performance is critical. 
Mingw64 is using a standard Windows memory model. 
 

14 Relocation of executable code 
Most operating systems use the same, or almost the same, file type for executable files and 
object files. An executable file may need relocation when it is loaded into memory, 
depending on the load address. The load address or image base is the virtual memory 
address at which the beginning of the executable file is placed. Relocation is a process 
where all cross-references using absolute memory addresses in the file are modified 
according to the load address. 
 
The executable file may be relocated by the linker to a preferred load address. If the 
preferred load address is not vacant then the executable file has to be relocated again by 
the loader to another load address.  
 
The most common values for the preferred load address are: 0x400000 for 32-bit and 64-bit 
Windows and 64-bit Linux systems; 0x8048000 for 32-bit Linux; 0x1000 for 32-bit Mach-O 
systems; 0x100000000 for 64-bit Mach-O systems. Other positive values can be used as 
well. The linker can adjust all cross references in the exe file according to the preferred load 
address. If a process has only one executable file, then the operating system can map the 
physical memory address at which this file is loaded to the desired virtual address, e.g. 
0x400000. A load address less than 231 = 0x80000000 makes it possible to use a small 
memory model where 32-bit signed absolute addresses can be used in 64-bit systems. 
Negative addresses are reserved for the operating system kernel. 
 
A dynamically linked library or shared object will need relocation at load time if the preferred 
load address is occupied by another library. A dynamic library will usually need at least two 
memory pages: a shared memory page for the code section and possibly read-only data, 
and a non-shared memory page for the writable data section. The size of a memory page is 
either 4 kbytes or 2 Mbytes.  

Relocation in Windows 

The preferred load address for the main executable is traditionally 0x400000, but other 
addresses are possible. The preferred load address for a DLL differs. A DLL may be loaded 
at an address higher than 231 in 64-bit mode. There is no compiler option to distinguish 
between main executables and DLLs. Therefore, 32-bit absolute addresses are rarely used 
in 64-bit Windows. Instead, code and data within the same executable or DLL are accessed 
with 32-bit addresses relative to the instruction pointer (rip-relative) or relative to the load 
address (image-relative). 
 



 50 

Multiple processes can use the same virtual memory addresses mapped to different 
physical addresses. When a DLL is shared between multiple processes, the sections 
typically have the same virtual addresses in all processes when the DLL is loaded at the 
preferred address. If relocation is needed in the code section then there will be multiple 
instances of the code section, while only explicitly shared data sections will be shared. 

Relocation in Linux 

The preferred load address for the main executable is often 0x8048000 in 32-bit mode and 
0x400000 in 64-bit mode. 
 
Shared objects may be loaded at negative addresses in 32-bit mode, but not in 64-bit mode 
where addresses above 231 are used for shared objects. 
 
When a shared object is shared between multiple processes, the same sections have 
different virtual addresses in the different processes. The distance between the code 
section and the data section is the same for all processes so that relative addresses can be 
used. The code section of a shared object is shared between processes unless it is 
modified by relocation. A shared object is usually compiled as position-independent code 
(option -fpic)  to avoid relocations in the code section. 

 
32-bit absolute addresses are used in the main executable, but not in shared objects in 64-
bit mode. A 64-bit shared object must therefore be compiled as position-independent code 
(option -fpic or -fpie) to avoid 32-bit absolute addresses. 

 
Shared objects usually have global offset tables (GOT) with pointers to static and global 
data, and procedure linkage tables (PLT) with pointers to global functions. All global 
symbols are accessed through these pointer tables when the compiler option -fpic is used. 

In 32-bit mode, the GOT is also used for local variables. The purpose of these tables is to 
mimic the behavior of static libraries. If a function in the main executable has the same 
name as a function in the shared object then the version in the main executable will be 
used, even when called from the shared object. The same applies to global variables. This 
feature that allows local access inside the shared object to be redirected comes at a high 
price because all accesses must go through the GOT and PLT tables. See the chapter 
"Static versus dynamic libraries" in manual 1: "Optimizing software in C++" for tips about 
how to avoid these pointer tables.  

Relocation in BSD 

This is similar to Linux. 

Relocations in Mac OS X 

Position-independent code is used by default even for the main executable, though this is 
not necessary. It is possible to speed up the main executable in 32-bit mode by making the 
code position-dependent (option -fno-pic). 

 
In 64-bit mode, most addresses use a 32-bit signed offset relative to the instruction pointer 
or to an arbitrary reference point. 
 
Shared objects rarely use global offset tables (GOT). Procedure linkage tables are not used 
for internal references. 
 
When a shared object is shared between multiple processes, the same sections have the 
same virtual addresses in the different processes. 

Relocations in 16-bit systems 

16-bit DOS and Windows 3.x systems use segmented memory models where all memory 
addresses are of the segment:offset kind. Executable files must be relocated when loaded 
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because the operating system cannot map the image to an arbitrary address. Only the 
segment part of a segment:offset address needs to be relocated. In DOS, the segment 
address is modified in the executable code. In Windows 3.x the segment descriptor table is 
modified. 
 
The 16-bit systems do not use the same file format for executable files as for object files. 

Relocations in Cygwin 

Cygwin tools run under Windows and use the same relocation process as Windows. An 
undocumented extra step called pseudo-relocation is added when an executable file (.exe 
or .dll) is loaded. The pseudo-relocation makes it possible to get direct access from one 
executable file to a data object in another executable file. The purpose of this is to emulate 
the behavior of Linux shared objects. This feature comes at a high price, when we consider 
that direct access to a data object in another executable must be considered bad program-
ming practice by modern standards. 
 

14.1 Import tables 

Almost all executable files contain function calls to functions in other DLLs or shared 
objects. In most cases, these function calls go via an import table in the executable file. The 
loader fills the import table with the addresses of the external functions when the program 
and the DLLs or shared objects are loaded. The implementation of the import table differs 
among systems.  
 
Some systems allow lazy binding of external references. Lazy binding means that the 
address of the external function is not inserted in the import table until the first time the 
function is called. The advantage of lazy binding is that the address of an external function 
needs not be calculated in case the function is never called. The disadvantage is a 
considerable delay the first time each external function is called. 
 
It is often possible to use static linking instead of dynamic linking for calls to library 
functions. The idea of static linking is that the required library functions, but not the entire 
function library, are copied into the executable file by the linker. The references to these 
functions can then be resolved at link time rather than at load time. 
 
 

15 Object file formats 
There are at least four different object file formats in common use for x86 platforms. These 
are OMF, COFF also called PE, ELF and Mach-O format. The old a.out format is rarely 
used any more. 
 

15.1 OMF format 

OMF stands for Object Module Format. This format is also called Microsoft 8086 
relocatable. The OMF format is used for 16-bit operating systems (DOS, Windows 3.x and 
earlier). Some compilers (Borland, Watcom, Symantec, Digital Mars) also use OMF format 
for 32-bit Windows. 
 
This format was originally designed for the segmented memory model of the 16-bit 8088 
microprocessor, used in the first IBM PCs. The OMF format allows the resolution of 
addresses relative to an arbitrary reference frame representing a segment or group of 
segments. A reference frame starts at an address divisible by 16 and can span 64 kbytes. 
Reference frames are allowed to overlap. Overlays are supported (i.e. allowing multiple 
pieces of code to share the same memory space). 
 



 52 

The OMF object file consists of a chain of records where the first byte of each record 
indicates the type of data contained in the record. No record can contain more than 1 kbyte 
of data. 
 
The OMF format was designed for compactness at the time of the first IBM PCs where the 
only means of storage was one or two 360 kbytes floppy disk drives. The OMF format 
allows several different methods for compressing bytes that are zero or repeated, not only in 
the binary code and data, but also in relocation tables. Repeat-blocks can be nested to an 
unlimited depth. These compression features make the interpretation of OMF files 
complicated and error-prone. The method for compressing repeated relocation information 
is hardly used any more, if it ever was. Repeat-blocks in data segments are still used by 
some tools. The Microsoft assembler can generate relocations in repeated data although 
this is discouraged and not supported by all linkers. 
 
The OMF standard also specifies a format for static libraries. The OMF library uses a hash 
table for listing the public symbols of all modules in the library. Other formats use a simple 
sorted list or even an unsorted list for the same purpose. The use of a hash table requires 
that all linkers and library managers use exactly the same hashing algorithm. Unfortunately, 
the official definition of the hashing algorithm is not as clear and stringent as one could wish 
for. The gain in efficiency from using a hash table rather than a sorted list is minimal, and 
not enough to justify the considerable increase in complexity, in my opinion. 
 
An OMF library can have an optional "extended dictionary" in addition to the hash table. The 
extended dictionary specifies dependencies between modules in order to facilitate one-pass 
linking. There are two different and incompatible formats for the extended dictionary. The 
original IBM/Microsoft format and a proprietary format used by Borland. Extended 
dictionaries are rarely used. 

Limitations: 

Segment word size: 16 or 32 bits. Can be mixed. 
Segment alignment: Supports only 1, 2, 4, 16, and either 256 or 4096. 
Max identifier length: 255 characters. 
Max external symbols: 64 k. 
Max number of segments: 64 k. 
Max segment size: 4 Gbytes. 
Max number of modules in library: < 64 k. 
Some old linkers limit the size of the library hash table to 251 blocks of 37 buckets each. 
This limits the number of public symbols in a library to between 251 and 9287, depending 
on the lengths of the names. Even for linkers that allow more than 251 blocks there are 
somewhat unpredictable limitations in the hash table. 
 

15.2 COFF format 

COFF stands for Common Object File Format. This format was first used in UNIX system V, 
but later superseded by ELF. A modification of the COFF format is used in Windows. The 
Windows version of COFF is also called PE (Portable Executable). The 64-bit version is 
called PE32+. The same format is used for object files and executable files. The COFF 
format used under windows is a Microsoft adaptation of the COFF format used on certain 
other platforms. 
 
The COFF format is used for object files in 32-bit and 64-bit Windows by Microsoft, Intel, 
Gnu, and Clang compilers. The Codeplay compiler for 32-bit Windows can use the OMF, 
COFF or ELF32 formats. 
 
The COFF format uses many different data structures, which makes it somewhat 
complicated. The definition of the data structures is not in agreement with the default 
alignment rules of modern compilers. 
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Different object file formats differ in the way self-relative references are implemented, due to 
the way the CPU calculates relative addresses. The CPU calculates self-relative addresses 
relative to the value of the instruction pointer after the instruction, not relative to the position 
of the address field in the instruction code. The distance from the position of the address 
field (relocation source) to the reference point used by the CPU is 2 in 16-bit code, 4 in 32-
bit code, and 4, 5, 6 or 8 in 64-bit code. The COFF and OMF formats have different 
relocation codes for each of these distances so that the necessary correction can be 
inserted by the linker. The ELF and Mach-O formats have no inherent recognition of this 
difference, so that the correction must be inserted as an explicit addend in the object file. 
 
The COFF format allows the specification of image-relative references, which are not 
available on other platforms. Image-relative references are used in 32-bit mode for debug 
information. 32-bit image-relative references are used in 64-bit mode for exception handling 
information and in general for saving space where 64-bit pointers would otherwise be 
needed. 

Limitations: 

Segment word size: 32 or 64 bits. 
Max number of sections: 32 k. 
Max file size: 4 Gbytes. 
Max section size: 4 Gbytes. 
Max relocations per section: 64 k. 
Max library size: 4 Gbytes. 
 

15.3 ELF format 

ELF stands for Executable and Linkable Format. This format has replaced older formats like 
a.out and COFF in Linux and BSD. Gnu tools running under Linux and BSD often accept 
several other formats, not including the formats used under Windows. Gnu tools running 
under Windows accept COFF and ELF formats. 
 
The ELF format is designed to be flexible and expandable. The sizes of all data structures 
are specified explicitly so that they can be expanded without losing backwards compatibility. 
This makes the ELF format far more clear and robust than other formats. 

Limitations: 

Segment word size: 32 or 64 bits. 
Max number of sections: 64 k. 
Max file size: 4 Gbytes for 32 bits, 264 bytes for 64 bits. 
Max section size: 4 Gbytes for 32 bits, 264 bytes for 64 bits. 
Max string table size: 4 Gbytes. 
Max number of symbols: 16 M for 32 bits, 4 G for 64 bits. 
Max library size: 4 Gbytes. 
 

15.4 Mach-O format 

Mach-O stands for Mach Object. This format is used in Mac OS systems for object files and 
executable files. The following description applies only to the Intel-based Mac OS X 
(Darwin) system. 
 
Mach-O object files have only one segment record comprising several section records. 
Mach-O executable files have several segment records. 
 
The Mach-O format allows the specification of addresses relative to an arbitrary reference 
point in an arbitrary section. This addressing method, which is not available in the other 
object file formats, is used for position-independent code. 
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Position-independent code and lazy binding is used by default by the Gnu compiler for 32-
bit Mac OS X. This makes code execution less efficient. Position-independent code is 
required only for shared objects (dynamic link libraries) in Mac OS X. 
 
Local symbols are referenced by their addresses rather than by their names in 32-bit Mach-
O files, where the COFF and ELF formats have symbol table entries for local symbols. 

Limitations: 

Section name length: 16 characters. 
Max file size: 4 GB. 
Max section size: 16 MB for position-independent code, 4 GB for 32 bits, 264 bytes for 64 
bits. 
Max number of sections: 16 M. 
Max number of symbols: 16 M. 
Max library size: 4 GB. 
 

15.5 a.out format 

a.out stands for Assembler Output. This format is used in older versions of UNIX and similar 
systems. The name a.out remains as the default name for linker output files, even though 

these files are not in a.out format any more. Some linkers still support the a.out format. 
 

15.6 Comparison of object file formats 

The ELF format stands out as the most consistent, clear, robust and flexible of the object file 
formats. The other formats are full of patches and appear kludgy in comparison. I would 
recommend the ELF format for new applications. The OMF format should be used only for 
16-bit applications. 
 

15.7 Conversion between object file formats 

It may be possible to convert object files from one format to another in simple cases. A tool 
for this purpose named objconv is available at www.agner.org/optimize. This tool can also 

be used as a cross-platform library manager. See the objconv manual for details and 

mentioning of other relevant tools. 
 
Conversion of an object file will fail if the file contains references of a type that is not 
supported by the target format, e.g. image-relative references in COFF files or position-
independent code in Mach-O files. 
 
An object file that has been converted from one platform to another will work on the target 
platform only if all calling conventions etc. are the same on both platforms and there is no 
reference to platform-specific library functions or system functions. 
 
Differences in name-mangling conventions can be fixed by using extern "C" declarations or 

by using objconv to change symbol names in the object file. 

 
The use of converted object files can fail to work for many reasons. All the compatibility 
problems described in the present document should be considered in order to predict 
whether object file conversion is likely to work. While the calling conventions are almost the 
same in all 32-bit x86 systems, they are quite different in 64-bit systems. A call stub is 
needed for converted functions in 64-bit systems. 
 
Conversion of compiler-generated object files should be used only as a last resort when the 
source code is not available. Conversion of object files made from assembly code can be 

http://www.agner.org/optimize
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expected to work if the assembly source is carefully inspected for possible compatibility 
problems. 
 

15.8 Intermediate file formats 

Some compilers have features for optimizing code across function calls and modules (whole 
program optimization). These compilers use intermediate files containing partially compiled 
code. The format for these intermediate files is not standardized. It is not even guaranteed 
to be compatible between different versions of the same compiler. The intermediate file 
format is therefore not suitable for distributing function libraries. 
 
It would be useful to have a standardized object file format that includes information about 
which registers each function modifies, in order to optimize register allocation. Such a file 
format has not been implemented for any of the platforms I have studied. 
 
Java compilers generate an intermediate code called Java bytecode. This code is either 
interpreted or just-in-time compiled by a Java machine on the target platform. The byte code 
is platform independent and needs no translation. Java bytecode is less efficient than 
compiled machine code. 
 
A similar technology is used by C++, C# and Visual Basic compilers for the Microsoft .NET 
platform. The bytecode is just-in-time compiled by the .NET runtime framework on the target 
machine. The bytecode is expected to work on any platform for which a .NET framework 
exists. .NET bytecode is less efficient than compiled machine code. 
 
 

16 Debug information 
Compilers differ in the way they store debugging information and information for profilers in 
object files and executable files. Thus, it may not be possible to use the same debugger for 
different compilers, even on the same platform. The information stored includes names of 
source files, line numbers, and variable names. I have not studied the details of how debug 
information is stored. 
 
 

17 Data endian-ness 
All systems based on 16, 32 and 64 bit x86 microprocessors use little-endian data storage, 
i.e. the least significant byte of a multi-byte data unit is stored at the lowest address. Many 
other microprocessor platforms use big-endian data storage. This can give rise to 
compatibility problems when exchanging binary data files between platforms, and when 
porting C++ programs that explicitly address part of a data object, such as the sign bit of a 
floating point number. 
 
 

18 Predefined macros 
Most C++ compilers have a predefined macro containing the version number of the 
compiler. Programmers can use preprocessing directives to check for the existence of these 
macros in order to detect which compiler the program is compiled on and thereby fix 
problems with incompatible compilers. 
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Table 24.  Compiler version predefined macros 

Compiler Predefined macro 

Borland __BORLANDC__ 

Clang __clang__ 

Codeplay VectorC __VECTORC__ 

Digital Mars __DMC__ 

Gnu __GNUC__ 

Intel legacy “Classic” __INTEL_COMPILER 

Intel LLVM based __INTEL_LLVM_COMPILER 

Microsoft _MSC_VER 

Pathscale __PATHSCALE__ 

Symantec __SYMANTECC__ 

Watcom __WATCOMC__ 

 
 
Unfortunately, not all compilers have well-documented macros telling which hardware 
platform and operating system they are compiling for. The following macros may or may not 
be defined: 
 

Table 25.  Hardware platform predefined macros 

Hardware platform Predefined macro 

x86 _M_IX86, __INTEL__, __i386__ 

x86-64 _M_X64, __x86_64__, __amd64 

IA64 __IA64__ 

DEC Alpha __ALPHA__ 

Motorola Power PC __POWERPC__ 

Any little endian __LITTLE_ENDIAN__ 

Any big endian __BIG_ENDIAN__ 

 
 

Table 26.  Operating system predefined macros 

Operating system Predefined macro 

DOS 16 bit __MSDOS__, _MSDOS 

Windows 16 bit _WIN16 

Windows 32 bit _WIN32, __WINDOWS__ 

Windows 64 bit _WIN64, _WIN32 

Cygwin __CYGWIN__ 

Mingw __MINGW32__, __MINGW64__ 

Linux 32 bit __unix__, __linux__ 

Linux 64 bit __unix__, __linux__, __LP64__, __amd64 

BSD __unix__, __BSD__, __FREEBSD__ 

Mac OS __APPLE__, (__DARWIN__, __MACH__) 

OS/2 __OS2__ 

 
A more comprehensive list of predefined macros can be found at predef.sf.net. 

http://predef.sf.net/
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19 Available C++ Compilers 

19.1 Microsoft 

Microsoft Visual C++ comes in several different versions. The professional edition, which is 
relatively expensive, includes integrated development environment (IDE) and many tools 
including debugger and profiler. A limited edition is available for free. The Visual Studio IDE 
can use other compilers as plugins, including Clang and Intel. 

19.2 Borland/Embarcadero 

Borland C++ compilers and development tools were once very popular. After several years 
where the compiler was not properly maintained, they have switched to using the Clang 
compiler front end. 

19.3 Watcom 

Watcom C++ is no longer sold commercially, but it has been continued as an open source 
project. The Watcom compiler is available from www.openwatcom.org, including integrated 
development environment, debugger, profiler, assembler, disassembler, and other tools. 
The compiler is currently not up to date. 
 
Users of this compiler should be aware that register usage and calling conventions differ 
from other compilers. You must fix these problems by using #pragma's when defining or 

calling DLL functions and when combining with tools from other vendors.  

19.4 Gnu 

Gnu C++ is an open source compiler that comes with most distributions of Linux, BSD and 
Mac OS. Various Windows versions are available. The version from www.msys2.org is 
recommended. Also available is an assembler (GAS) which uses the AT&T syntax by 
default. 

19.5 Clang 

Clang is a front end for the Low Level Virtual Machine (LLVM) open source compiler 
available for all x86 platforms. It is the default compiler for newer versions of x86-based Mac 
OS. A Windows version is available as a plugin to Microsoft Visual Studio. 

19.6 Digital Mars 

Digital Mars C++ compiler is a continuation of Zortech C++ and Symantec C++, available 
from www.digitalmars.com. The compiler package is cheap, and a command line version is 
available for free. Both Symantec C++ and Digital Mars C++ are binary compatible with 
Microsoft C++ in most respects, including calling conventions and name mangling. The 
compiler is not up to date. The latest version is from 2013, supporting only 32-bit Windows. 

19.7 Codeplay 

The Codeplay VectorC C++ compiler is no longer available. 

19.8 Intel C++ compiler Classic 

Intel compilers are available for Windows, Linux, and Intel-based Mac OS X. This legacy 
compiler is now named “Classic”. It used to be a relatively expensive compiler, but is now 
available for free together with the newer Intel LLVM-based compiler. The Windows version 
is binary compatible with Microsoft compilers. The Linux version is binary compatible with 
Gnu compilers. Code produced with the Intel Classic compiler has reduced performance 
when running on a non-Intel processor. The Intel Classic compiler is not recommended for 
new projects. 
 

http://www.openwatcom.org/
https://www.msys2.org/
http://www.digitalmars.com/
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19.9 Intel oneAPI C++ compiler, LLVM based 

This is a forking of the Clang compiler with added Intel features and Intel function libraries. It 
performs better than the Intel Classic compiler. It is possible to generate code that works 
well on non-Intel microprocessors. 
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20 Literature 

20.1 ABI's for Unix, Linux, BSD and Mac OS X (Intel-based). 

Despite its name, the "Itanium C++ ABI" applies to other hardware platforms than the 
Itanium, except for a few processor-specific details, though not all x86 compilers conform to 
this ABI. The "Itanium C++ ABI" contains valuable information about the representation of 
member pointers, virtual tables, runtime type identification and name mangling, not found 
anywhere else. Most of this information applies to 32-bit and 64-bit Gnu compilers for x86 
platforms. See also https://refspecs.linuxfoundation.org/. 
 

• System V Application Binary Interface. AMD64 Architecture Processor Supplement 
http://x86-64.org/documentation/abi.pdf  
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI  
 

• Itanium C++ ABI. Revision 1.86. Draft, 2005. www.codesourcery.com/cxx-abi/  
 

• Itanium C++ ABI: Exception Handling. Revision: 1.22. Draft, 2005. 
www.codesourcery.com/cxx-abi/abi-eh.html 

Linux, BSD, Mac OS 32 bits: 

• SYSTEM V. APPLICATION BINARY INTERFACE. Intel386 Architecture Processor 
Supplement. Fourth Edition. 

Mac OS X IA32 

• Mac OS X ABI Function Call Guide. 2006-04-04. 
developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/ 
This appears to be the most up-to-date specification of the IA32 ABI. Many of the 
specifications, but not all, apply to Linux and BSD platforms as well. 

Linux and BSD, 64 bits: 

• System V Application Binary Interface. AMD64 Architecture Processor Supplement. 
Draft Version 0.99.8, 2016. https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI  
 

20.2 ABIs for Windows 

Windows, 32 bits: 

• C++ Language Reference: Calling Conventions. msdn.microsoft.com, 2006. 

Windows, 64 bits: 

• x64 Software Conventions. msdn.microsoft.com, 2006. 

Amendment for YMM registers: 

• Intel® Advanced Vector Extensions Programming Reference. 
http://software.intel.com/en-us/avx/ 

• Upcoming Intel®64 Instruction Set Architecture Extensions -Intel®Advanced Vector 
Extensions (Intel®AVX). Intel Developer Forum 2008. 

 
 

https://refspecs.linuxfoundation.org/
http://x86-64.org/documentation/abi.pdf
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
http://www.codesourcery.com/cxx-abi/
http://www.codesourcery.com/cxx-abi/abi-eh.html
http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/index.html
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://software.intel.com/en-us/avx/
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20.3 Object file format specifications 

OMF: 

• Tool Interface Standards (TIS): Relocatable Object Module Format (OMF) 
Specification. Version 1.1. TIS Committee, 1995. 
 

• United States Patent 5408665, 1995. Describes the Borland library extended 
dictionary format. 

COFF: 

• Visual Studio, Microsoft Portable Executable and Common Object File Format 
Specification. Revision 8.0, 2006. download.microsoft.com. 

ELF: 

• Executable and Linkable Format (ELF). Version1.1. Tool Interface Standards (TIS). 

Mach-O: 

• Mac OS X ABI Mach-O File Format Reference, 2007. Apple Computer, Inc. 
developer.apple.com. 

 
 

21 Copyright notice  
This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is 
not allowed. Non-public distribution to a limited audience for educational purposes is 
allowed. The code examples in these manuals can be used without restrictions. A creative 
commons license CC-BY-SA shall automatically come into force when I die. See 
https://creativecommons.org/licenses/by-sa/4.0/legalcode 
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